SEARCH

SEARCH BY CITATION

References

  • Aiken, A. C., et al. (2008), O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution-time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42, 44784485, doi:10.1021/es703009q.
  • Andreae, M. O., and P. J. Crutzen (1997), Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry, Science, 276, 10521058, doi:10.1126/science.276.5315.1052.
  • Asa-Awuku, A., A. Nenes, A. P. Sullivan, C. Hennigan, and R. J. Weber (2008), Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol, Atmos. Chem. Phys., 8, 799812.
  • Asa-Awuku, A., G. J. Engelhart, B. H. Lee, S. N. Pandis, and A. Nenes (2009), Relating CCN activity, volatility, and droplet growth kinetics of β-caryophyllene secondary organic aerosol, Atmos. Chem. Phys., 9, 795812.
  • Asa-Awuku, A., A. Nenes, S. Gao, R. C. Flagan, and J. H. Seinfeld (2010), Water-soluble SOA from Alkene ozonolysis: Composition and droplet activation kinetics inferences from analysis of CCN activity, Atmos. Chem. Phys., 10, 15851597.
  • Badger, C. L., I. George, P. T. Griffiths, C. F. Braban, R. A. Cox, and J. P. D. Abbatt (2006), Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate, Atmos. Chem. Phys., 6, 755768.
  • Baumann, K., F. Ift, J. Z. Zhao, and W. L. Chameides (2003), Discrete measurements of reactive gases and fine particle mass and composition during the 1999 Atlanta Supersite Experiment, J. Geophys. Res., 108(D7), 8416, doi:10.1029/2001JD001210.
  • Bougiatioti, A., C. Fountoukis, N. Kalivitis, S. N. Pandis, A. Nenes, and N. Mihalopoulos (2009), Cloud condensation nuclei measurements in the eastern Mediterranean marine boundary layer: CCN closure and droplet growth kinetics, Atmos. Chem. Phys., 9, 70537066.
  • Brooks, S. D., P. J. DeMott, and S. M. Kreidenweis (2004), Water uptake by particles containing humic materials and mixtures of humic materials with ammonium sulfate, Atmos. Environ., 38, 18591868, doi:10.1016/j.atmosenv.2004.01.009.
  • Butler, A. J. (2000), Temporal and spatial analysis of PM2.5 mass and composition in Atlanta, Ph.D. thesis, School of Civ. and Environ. Eng., Ga. Inst. of Technol., Atlanta.
  • Carrico, C. M., M. D. Petters, S. M. Kreidenweis, J. L. Collett, G. Engling, and W. C. Malm (2008), Aerosol hygroscopicity and cloud droplet activation of extracts of filters from biomass burning experiments, J. Geophys. Res., 113, D08206, doi:10.1029/2007JD009274.
  • Case Hanks, A. T. (2008), Formaldehyde instrument development and boundary layer sulfuric acid: Implications for photochemistry, Ph.D. thesis, School of Earth and Atmos. Sci., Ga. Inst. of Technol., Atlanta.
  • Clegg, S. L., and P. Brimblecombe (1988), Equilibrium partial pressures of strong acids over concentrated saline solutions—I. HNO3, Atmos. Environ., 22, 91100, doi:10.1016/0004-6981(88)90302-2.
  • Cobb, C. E. (2006), Spatial and temporal variations of PM2.5 mass and composition in Atlanta: ASACA 1999–2006, M.S. thesis, School of Civ. and Environ. Eng., Ga. Inst. of Technol., Atlanta.
  • Cross, E. S., T. B. Onasch, M. Canagaratna, J. T. Jayne, J. Kimmel, X.-Y. Yu, M. L. Alexander, D. R. Worsnop, and P. Davidovits (2009), Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer, Atmos. Chem. Phys., 9, 77697793.
  • DeCarlo, P. F., et al. (2008), Fast airborne aerosol size and chemistry measurements with the high resolution aerosol mass spectrometer during the MILAGRO Campaign, Atmos. Chem. Phys., 8, 40274048.
  • de Foy, B., et al. (2008), Basin-scale wind transport during the MILAGRO field campaign and comparison to climatology using cluster analysis, Atmos. Chem. Phys., 8, 12091224.
  • de Gouw, J. A., et al. (2009), Emission and chemistry of organic carbon in the gas and aerosol phase at a sub-urban site near Mexico City in March 2006 during the MILAGRO study, Atmos. Chem. Phys., 9, 34253442.
  • Dinar, E., T. F. Mentel, and Y. Rudich (2006a), The density of humic acids and humic like substances (HULIS) from fresh and aged wood burning and pollution aerosol particles, Atmos. Chem. Phys., 6, 52135224.
  • Dinar, E., I. Taraniuk, E. R. Graber, S. Katsman, T. Moise, T. Anttila, T. F. Mentel, and Y. Rudich (2006b), Cloud condensation nuclei properties of model and atmospheric HULIS, Atmos. Chem. Phys., 6, 24652482.
  • Dinar, E., I. Taraniuk, E. R. Graber, T. Anttila, T. F. Mentel, and Y. Rudich (2007), Hygroscopic growth of atmospheric and model humic-like substances, J. Geophys. Res., 112, D05211, doi:10.1029/2006JD007442.
  • Docherty, K. S., W. Wu, Y. B. Lim, and P. J. Ziemann (2005), Contributions of organic peroxides to secondary aerosol formed from reactions of monoterpenes with O3, Environ. Sci. Technol., 39, 40494059, doi:10.1021/es050228s.
  • Dusek, U., et al. (2006), Size matters more than chemistry for cloud-nucleating ability of aerosol particles, Science, 312, 13751378.
  • Edney, E. O., T. E. Kleindienst, M. Jaoui, M. Lewandowski, J. H. Offenberg, W. Wang, and M. Claeys (2005), Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOx/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States, Atmos. Environ., 39, 52815289, doi:10.1016/j.atmosenv.2005.05.031.
  • Engelhart, G. J., A. Asa-Awuku, A. Nenes, and S. N. Pandis (2008), CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol, Atmos. Chem. Phys., 8, 39373949.
  • Facchini, M. C., S. Decesari, M. Mircea, S. Fuzzi, and G. Loglio (2000), Surface tension of atmospheric wet aerosol and cloud/fog droplets in relation to their organic carbon content and chemical composition, Atmos. Environ., 34, 48534857, doi:10.1016/S1352-2310(00)00237-5.
  • Fast, J. D., et al. (2007), A meteorological overview of the MILAGRO field campaigns, Atmos. Chem. Phys., 7, 22332257.
  • Fountoukis, C., and A. Nenes (2007), ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+−Ca2+−Mg2+−NH4+−Na+−SO42−−NO3−Cl−H2O aerosols, Atmos. Chem. Phys., 7, 46394659.
  • Hagler, G. S. W., M. H. Bergin, E. A. Smith, and J. E. Dibb (2007), A summer time series of particulate carbon in the air and snow at Summit, Greenland, J. Geophys. Res., 112, D21309, doi:10.1029/2007JD008993.
  • Hoffer, A., G. Kiss, M. Blazso, and A. Gelencser (2004), Chemical characterization of humic-like substances (HULIS) formed from a lignin-type precursor in model cloud water, Geophys. Res. Lett., 31, L06115, doi:10.1029/2003GL018962.
  • Jang, M. S., and R. M. Kamens (2001), Atmospheric secondary aerosol formation by heterogeneous reactions of aldehydes in the presence of a sulfuric acid aerosol catalyst, Environ. Sci. Technol., 35, 47584766, doi:10.1021/es010790s.
  • Jang, M. S., N. M. Czoschke, S. Lee, and R. M. Kamens (2002), Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions, Science, 298, 814817, doi:10.1126/science.1075798.
  • Jáuregui Ostos, E. (2000), El Clima de la Ciudad de México, 131 pp., Inst. de Geogr., Mexico City.
  • Kiss, G., E. Tombacz, B. Varga, T. Alsberg, and L. Persson (2003), Estimation of the average molecular weight of humic-like substances isolated from fine atmospheric aerosol, Atmos. Environ., 37, 37833794, doi:10.1016/S1352-2310(03)00468-0.
  • Kiss, G., E. Tombacz, and H. C. Hansson (2005), Surface tension effects of humic-like substances in the aqueous extract of tropospheric fine aerosol, J. Atmos. Chem., 50(3), 279294, doi:10.1007/s10874-005-5079-5.
  • Kleinman, L. I., et al. (2008), The time evolution of aerosol composition over the Mexico City plateau, Atmos. Chem. Phys., 8, 15591575.
  • Koehler, K. A., S. M. Kreidenweis, P. J. DeMott, M. D. Petters, A. J. Prenni, and C. M. Carrico (2009), Hygroscopicity and cloud droplet activation of mineral dust aerosol, Geophys. Res. Lett., 36, L08805, doi:10.1029/2009GL037348.
  • Lance, S. (2007), Quantifying compositional impacts of ambient aerosol on cloud droplet formation, Ph.D. thesis, School of Earth and Atmos. Sci., Ga. Inst. of Technol., Atlanta.
  • Lance, S., J. Medina, J. N. Smith, and A. Nenes (2006), Mapping the operation of the DMT continuous flow CCN counter, Aerosol Sci. Technol., 40, 242254, doi:10.1080/02786820500543290.
  • Lance, S., et al. (2009), Cloud condensation nuclei activity, closure, and droplet growth kinetics of Houston aerosol during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), J. Geophys. Res., 114, D00F15, doi:10.1029/2008JD011699.
  • Langmuir, I. (1917), The constitution and fundamental properties of solids and liquids. II. Liquids, J. Am. Chem. Soc., 39, 18481906, doi:10.1021/ja02254a006.
  • Moffet, R. C., B. de Foy, L. T. Molina, M. J. Molina, and A. Prather (2008), Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry, Atmos. Chem. Phys., 8, 44994516.
  • Molina, L. T., et al. (2007), Air quality in North America's most populous city—Overview of the MCMA-2003 campaign, Atmos. Chem. Phys., 7, 24472473.
  • Moore, R. H., E. D. Ingall, A. Sorooshian, and A. Nenes (2008), Molar mass, surface tension, and droplet growth kinetics of marine organics from measurements of CCN activity, Geophys. Res. Lett., 35, L07801, doi:10.1029/2008GL033350.
  • Murphy, S. M., et al. (2009), Comprehensive simultaneous shipboard and airborne characterization of exhaust from a modern container ship at sea, Environ. Sci. Technol., 43, 46264640, doi:10.1021/es802413j.
  • Padró, L. T., R. Morrison, A. Asa-Awuku, and A. Nenes (2007), Inferring thermodynamic properties from CCN activation experiments: Single-component and binary aerosols, Atmos. Chem. Phys., 7, 52635274.
  • Petters, M. D., and S. M. Kreidenweis (2007), A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 19611971.
  • Pitzer, K. S., and G. Mayorga (1973), Thermodynamics of electrolytes—II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent, J. Phys. Chem., 77, 23002308, doi:10.1021/j100638a009.
  • Roberts, G. C., and A. Nenes (2005), A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements, Aerosol Sci. Technol., 39, 206221, doi:10.1080/027868290913988.
  • Rose, D., G. P. Frank, U. Dusek, S. S. Gunthe, M. O. Andreae, and U. Pöschl (2008), Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment, Atmos. Chem. Phys., 8, 11531179.
  • Ruehl, C. R., P. Y. Chuang, and A. Nenes (2008), How quickly do cloud droplets form on atmospheric particles? Atmos. Chem. Phys., 8, 10431055.
  • Ruehl, C. R., P. Y. Chuang, and A. Nenes (2009), Distinct CCN activation kinetics above the marine boundary layer along the California coast, Geophys. Res. Lett., 36, L15814, doi:10.1029/2009GL038839.
  • Samburova, V., R. Zenobi, and M. Kalberer (2005), Characterization of high molecular weight compounds in urban atmospheric particles, Atmos. Chem. Phys., 5, 21632170.
  • Shantz, N. C., W. R. Leaitch, L. Phinney, M. Mozurkewich, and D. Toom-Sauntry (2008), The effect of organic compounds on the growth rate of cloud droplets in marine and forest settings, Atmos. Chem. Phys., 8, 58695887.
  • Sorooshian, A., S. M. Murphy, S. Hersey, H. Gates, L. T. Padro, A. Nenes, F. J. Brechtel, H. Jonsson, R. C. Flagan, and J. H. Seinfeld (2008), Comprehensive airborne characterization of aerosol from a major bovine source, Atmos. Chem. Phys., 8, 54895520.
  • Spelt, J. K., and D. Li (1996), Applied Surface Thermodynamics, Marcel Dekker, New York.
  • Stone, E. A., D. C. Snyder, R. J. Sheesley, A. P. Sullivan, R. J. Weber, and J. J. Schauer (2008), Source apportionment of fine organic aerosol in Mexico City during the MILAGRO experiment 2006, Atmos. Chem. Phys., 8, 12491259.
  • Sullivan, A. P., and R. J. Weber (2006), Chemical characterization of the ambient organic aerosol soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size-exclusion chromatography, J. Geophys. Res., 111, D05315, doi:10.1029/2005JD006486.
  • Sullivan, A. P., R. J. Weber, A. L. Clements, J. R. Turner, M. S. Bae, and J. J. Schauer (2004), A method for on-line measurement of water-soluble organic carbon in ambient aerosol particles: Results from an urban site, Geophys. Res. Lett., 31, L13105, doi:10.1029/2004GL019681.
  • Surratt, J. D., et al. (2007), Evidence for organosulfates in secondary organic aerosol, Environ. Sci. Technol., 41, 517527, doi:10.1021/es062081q.
  • Svenningsson, B., et al. (2006), Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance, Atmos. Chem. Phys., 6, 19371952.
  • Taraniuk, I., E. R. Graber, A. Kostinski, and Y. Rudich (2007), Surfactant properties of atmospheric and model humic-like substances (HULIS), Geophys. Res. Lett., 34, L16807, doi:10.1029/2007GL029576.
  • Tobias, H. J., and P. J. Ziemann (2000), Thermal desorption mass spectrometric analysis of organic aerosol formed from reactions of 1-tetradecene and O3 in the presence of alcohols and carboxylic acids, Environ. Sci. Technol., 34, 21052115, doi:10.1021/es9907156.
  • Turpin, B. J., J. J. Huntzicker, and S. V. Hering (1994), Investigation of organic aerosol sampling artifacts in the Los Angeles Basin, Atmos. Environ., 28, 30613071.
  • Vega, E., V. Mugica, E. Reyes, G. Sánchez, J. C. Chow, and J. G. Watson (2001), Chemical composition of fugitive dust emitters in Mexico City, Atmos. Environ., 35, 40334039, doi:10.1016/S1352-2310(01)00164-9.
  • Vestin, A., J. Rissler, E. Swietlicki, G. P. Frank, and M. O. Andreae (2007), Cloud-nucleating properties of the Amazonian biomass burning aerosol: Cloud condensation nuclei measurements and modeling, J. Geophys. Res., 112, D14201, doi:10.1029/2006JD008104.
  • Wex, H., T. Hennig, I. Salma, R. Ocksay, A. Kiselev, S. Henning, A. Massling, A. Wiedensohler, and F. Stratmann (2007), Hygroscopic growth and measured and modeled critical supersaturations of an atmospheric HULIS sample, Geophys. Res. Lett., 34, L02818, doi:10.1029/2006GL028260.
  • Zappoli, S., et al. (1999), Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility, Atmos. Environ., 33, 27332743, doi:10.1016/S1352-2310(98)00362-8.