SEARCH

SEARCH BY CITATION

References

  • Baker, D. F., et al. (2006), TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003, Global Biogeochem. Cycles, 20, GB1002, doi:10.1029/2004GB002439.
  • Brenkert, A. L. (1998), Carbon Dioxide Emission Estimates From Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis, http://cdiac.esd.ornl.gov/ndps/ndp058a.html, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn.
  • Briggs, D. J., J. Gulliver, D. Fecht, and D. M. Vienneau (2007), Dasymetric modelling of small-area population distribution using land cover and light emissions data, Remote Sens. Environ., 108, 451466.
  • Chevallier, F., N. Viovy, M. Reichstein, and P. Ciais (2006), On the assignment of prior errors in Bayesian inversions of CO2 surface fluxes, Geophys. Res. Lett., 33, L13802, doi:10.1029/2006GL026496.
  • Chevallier, F., F.-M. Bron, and P. J. Rayner (2007), The contribution of the Orbiting Carbon Observatory to the estimation of CO2 sources and sinks: Theoretical study in a variational data assimilation framework, J. Geophys. Res., 112, D09307, doi:10.1029/2006JD007375.
  • Daley, R. (1991), Atmospheric Data Analysis, Cambridge Univ. Press, Cambridge, U. K.
  • Doll, C. N. H., J.-P. Muller, and C. D. Elvidge (2000), Night-time imagery as a tool for global mapping of socioeconomic parameters and greenhouse gas emissions, Ambio, 29, 157162.
  • Elvidge, C. D., K. E. Baugh, E. A. Kihn, H. W. Kroehl, and E. R. Davis (1997), Mapping city lights with nighttime data from the DSMP operational linescan system, Photogramm. Eng. Remote Sens., 63, 727734.
  • Elvidge, C. D., M. L. Imhoff, K. E. Baugh, V. R. Hobson, I. Nelson, J. Safran, J. B. Dietz, and B. T. Tuttle (2001), Night-time lights of the world: 1994–1995, J. Photogramm. Remote Sens., 56, 8199.
  • Enting, I. G. (2002), Inverse Problems in Atmospheric Constituent Transport, 392 pp., Cambridge Univ. Press, New York.
  • Gilbert, J. C., and C. Lemaréchal (1989), Some numerical experiments with variable storage quasi-Newton algorithms, Math. Programm., 45, 407435.
  • Gurney, K. R., et al. (2002), Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models, Nature, 415, 626630.
  • Gurney, K. R., D. L. Mendoza, Y. Zhou, M. L. Fischer, C. C. Miller, S. Geethakumar, and S. de la Rue du Can (2009), High resolution fossil fuel combustion CO2 emission fluxes for the United States, Environ. Sci. Technol., 43, 55355541, doi:10.1021/es900806c.
  • Kalnay, E. (2003), Atmospheric Modelling, Data Assimilation, and Predictability, Cambridge Univ. Press, New York.
  • Levin, I., and U. Karstens (2007), Inferring high-resolution fossil fuel CO2 records at continental sites from combined 14CO2 and CO observations, Tellus, Ser. B, 59, 245250, doi:10.1111/j.1600-0889.2006.00244.x.
  • Liu, D. C., and J. Nocedal (1989), On the limited memory BFGS method for large scale optimization, Math. Programm., 45, 503528.
  • Marland, G., T. A. Boden, R. C. Griffin, S. F. Huang, P. Kanciruk, and T. R. Nelson (1989), Estimates of CO2 emissions from fossil fuel burning and cement manufacturing, based on the U.S. Bureau of Mines cement manufacturing data, Rep. ORNL/CDIAC-25, NDP-030, Carbon Dioxide Inf. Anal. Cent. Oak Ridge Natl. Lab., Oak Ridge, Tenn.
  • Marland, G., T. A. Boden, and R. J. Andres (2006), Global, regional, and national CO2 emissions, in Trends: A Compendium of Data on Global Change, Carbon Dioxide Inf. Anal. Cent. Oak Ridge Natl. Lab., Oak Ridge, Tenn.
  • Nakicenovic, N. (2004), Socioeconomic driving forces of emissions scenarios, in The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World, edited by C. B. Field, and M. R. Raupach, pp. 225239, Island Press, Washington, D. C.
  • Oda, T., and S. Maksyutov (2010), A very high-resolution global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights, 1980–2007, Atmos. Chem. Phys. Discuss., 10, 16,30716,344.
  • Olivier, J. G. J., J. A. V. Aardenne, F. J. Dentener, V. Pagliari, L. N. Ganzeveld, and J. A. H. W. Peters (2005), Recent trends in global greenhouse gas emissions: Regional trends 1970–2000 and spatial distribution of key sources in 2000, J. Integrative Environ. Sci., 2, 8199, doi:10.1080/15693430500400345.
  • Pétron, G., P. Tans, G. Frost, D. Chao, and M. Trainer (2008), High resolution emissions of CO2 from power generation in the USA, J. Geophys. Res., 113, G04008, doi:10.1029/2007JG000602.
  • Peylin, P., et al. (2005), Daily CO2 flux estimate over Europe from continuous atmospheric measurements: Part 1, Inverse methodology, Atmos. Chem. Phys., 5, 31733186.
  • Piao, S., J. Fang, P. Ciais, P. Peylin, Y. Huang, S. Sitch, and T. Wang (2009), The carbon balance of terrestrial ecosystems in China, Nature, 45, 10091013.
  • Raupach, M. R. (2007), Dynamics of resource production and utilisation in two- 29 component biosphere-human and terrestrial carbon systems, Hydrol. Earth Syst. Sci., 11, 875889.
  • Raupach, M. R., P. J. Rayner, D. J. Barrett, R. DeFries, M. Heimann, D. S. Ojima, S. Quegan, and C. Schmullius (2005), Model-data synthesis in terrestrial carbon observation: Methods, data requirements and data uncertainty specifications, Global Change Biol., 11, 378397.
  • Raupach, M. R., P. J. Rayner, and M. Paget (2010), Regional variations in spatial structure of nightlights, population density and fossil-fuel CO2 emissions, Energy Policy, 38, 47564764, doi:10.1016/j.enpol.2009.08.021.
  • Rayner, P. J., M. Scholze, W. Knorr, T. Kaminski, R. Giering, and H. Widmann (2005), Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS), Global Biogeochem. Cycles, 19, GB2026, doi:10.1029/2004GB002254.
  • Rayner, P. J., R. M. Law, C. E. Allison, R. J. Francey, and C. Pickett-Heaps (2008), The interannual variability of the global carbon cycle (1992–2005) inferred by inversion of atmospheric CO2 and δ13CO2 measurements, Global Biogeochem. Cycles, 22, GB3008, doi:10.1029/2007GB003068.
  • Stephens, B. B., et al. (2007), Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2, Science, 316, 17321735, doi:10.1126/science.1137004.
  • Tans, P. P., I. Y. Fung, and T. Takahashi (1990), Observational constraints on the global atmospheric CO2 budget, Science, 247, 14311438.
  • Tarantola, A. (1987), Inverse Problem Theory: Methods for Data Fitting and Parameter Estimation, Elsevier, Amsterdam.
  • Tarantola, A. (2004), Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, Pa.
  • Trudinger, C. M, et al. (2007), The OptIC project: An intercomparison of optimization techniques for parameter estimation in terrestrial biogeochemical models, J. Geophys. Res., 112, G02027, doi:10.1029/2006JG000367.
  • Turnbull, J., P. Rayner, J. Miller, T. Naegler, P. Ciais, and A. Cozic (2009), On the use of 14CO2 as a tracer for fossil fuel CO2: Quantifying uncertainties using an atmospheric transport model, J. Geophys. Res., 114, D22302, doi:10.1029/2009JD012308.