SEARCH

SEARCH BY CITATION

References

  • Alfarra, M. R., D. Paulsen, M. Gysel, A. A. Garforth, J. Dommen, A. S. H. Prévôt, D. R. Worsnop, U. Baltensperger, and H. Coe (2006), A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber, Atmos. Chem. Phys., 6, 52795293.
  • Anderson, T. L., and J. A. Ogren (1998), Determining aerosol radiative properties using the TSI 3563 integrating nephelometer, Aerosol Sci. Technol., 29, 5769.
  • Anderson, T. L., et al. (1996), Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer, J. Atmos. Oceanic Technol., 13, 967986.
  • Bohren, C., and D. Huffmann (2004), Absorption and Scattering of Light by Small Particles, Wiley, New York.
  • Carrico, C. M., M. J. Rood, and J. A. Ogren (1998), Aerosol light scattering properties at Cape Grim, Tasmania, during the first Aerosol Characterization Experiment (ACE 1), J. Geophys. Res., 103(D13), 16,56516,574, doi:10.1029/98JD00685.
  • Carrico, C. M., M. J. Rood, J. A. Ogren, C. Neusüss, A. Wiedensohler, and J. Heintzenberg (2000), Aerosol optical properties at Sagres, Portugal during ACE-2, Tellus, Ser B, 52, 694715.
  • Carrico, C. M., P. Kus, M. J. Rood, P. K. Quinn, and T. S. Bates (2003), Mixtures of pollution, dust, sea salt, and volcanic aerosol during ACE-Asia: Radiative properties as a function of relative humidity, J. Geophys. Res., 108(D23), 8650, doi:10.1029/2003JD003405.
  • Ceburnis, D., S. G. Jennings, B. M. Kelly, T. G. Spain, M. Ryan, and D. L. Savoie (2010), Advanced aerosol composition measurements and aerosol radiative properties (2003-FS-CD-LS-12-M1), STRIVE Rep. Ser., 49, Environ. Prot. Agency, Johnstown Castle, Ireland.
  • Chamaillard, K., C. Kleefeld, S. G. Jennings, D. Ceburnis, and C. D. O'Dowd (2006), Light scattering properties of sea-salt aerosol particles inferred from modeling studies and ground-based measurements, J. Quant. Spectrosc. Radiat. Transfer, 101, 498511.
  • Collaud Coen, M., et al. (2010), Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms, Atmos. Meas. Tech., 3, 457474.
  • Dinar, E., T. F. Mentel, and Y. Rudich (2006), The density of humic acids and humic like substances (HULIS) from fresh and aged wood burning and pollution aerosol particles, Atmos. Chem. Phys., 6, 52135224.
  • Duplissy, J., et al. (2009), Intercomparison study of six HTDMAs: results and general recommendations for HTDMA operation, Atmos. Meas. Tech., 2, 363378.
  • Fierz-Schmidhauser, R., P. Zieger, G. Wehrle, A. Jefferson, J. A. Ogren, U. Baltensperger, and E. Weingartner (2010a), Measurement of relative humidity dependent light scattering of aerosols, Atmos. Meas. Tech., 3, 3950.
  • Fierz-Schmidhauser, R., P. Zieger, M. Gysel, L. Kammermann, P. F. DeCarlo, U. Baltensperger, and E. Weingartner (2010b), Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch, Atmos. Chem. Phys., 10, 23192333.
  • Fitzgerald, J. W., W. A. Hoppel, and M. A. Vietti (1982), The size and scattering coefficient of urban aerosol particles at Washington, DC as a function of relative humidity, J. Atmos. Sci., 39(8), 18381852.
  • Gasso, S., et al. (2000), Influence of humidity on the aerosol scattering coefficient and its effect on the upwelling radiance during ACE-2, Tellus, Ser B, 52, 546567.
  • Grant, K. E., C. C. Chuang, A. S. Grossman, and J. E. Penner (1999), Modeling the spectral optical properties of ammonium sulfate and biomass burning aerosols: Parameterization of relative humidity effects and model results, Atmos. Environ., 33(17), 26032620.
  • Gras, J. L., J. B. Jensen, K. Okada, M. Ikegami, Y. Zaizen, and Y. Makino (1999), Some optical properties of smoke aerosol in Indonesia and tropical Australia, Geophys. Res. Lett., 26(10), 13931396, doi:10.1029/1999GL900275.
  • Gosse, S. F., M. Wang, D. Labrie, and P. Chylek (1997), Imaginary part of the refractive index of sulfates and nitrates in the 0.7–2.6 μm spectral region, Appl. Opt., 36(16), 36223634.
  • Gysel, M., G. B. McFiggans, and H. Coe (2009), Inversion of tandem differential mobility analyser (TDMA) measurements, J. Aerosol Sci., 40, 134151.
  • Hale, G. M., and M. R. Querry (1973), Optical constants of water in the 200 nm to 200 μm wavelength region, Appl. Opt., 12(3), 555563.
  • Hand, J. L., and S. M. Kreidenweis (2002), A new method for retrieving particle refractive index and effective density from aerosol size distribution data, Aerosol Sci. Technol., 36, 10121026.
  • Haywood, J. M., and V. Ramaswamy (1998), Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols, J. Geophys. Res., 103(D6), 60436058, doi:10.1029/97JD03426.
  • Heim, M., B. J. Mullins, H. Umhauer, and G. Kasper (2008), Performance evaluation of three optical particle counters with an efficient “multimodal” calibration method, J. Aerosol Sci., 39, 10191031.
  • Hess, M., P. Koepke, and I. Schult (1998), Optical properties of aerosols and clouds: The software package OPAC, Bull. Am. Meteorol. Soc., 79(5), 831844.
  • Intergovernmental Panel on Climate Change (2007), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Intergovernmental Panel on Climate Change, editd by S. Solomon et al., Cambridge Univ. Press, New York.
  • Jennings, S. G., F. M. McGovern, and W. F. Cooke (1993), Carbon mass concentration measurements at Mace Head, on the west coast of Ireland, Atmos. Environ., Part A, 27(8), 12291239.
  • Jennings, S. G., M. Geever, F. M. McGovern, J. Francis, T. G. Spain, and T. Donaghy (1997), Microphysical and physicochemical characterization of atmospheric marine and continental aerosol at Mace Head, Atmos. Environ., 31, 27952808.
  • Jennings, S. G., C. Kleefeld, C. D. O'Dowd, C. Junker, T. G. Spain, P. O'Brien, A. F. Roddy, and T. C. O'Connor (2003), Mace Head Atmospheric Research Station—Characterization of aerosol radiative parameters, Boreal Environ. Res., 8, 303314.
  • Kiehl, J. T., and B. P. Briegleb (1993), The relative roles of sulfate aerosols and greenhouse gases in climate forcing, Science, 260(5106), 311314.
  • Kiehl, J. T., T. L. Schneider, P. J. Rasch, M. C. Barth, and J. Wong (2000), Radiative forcing due to sulfate aerosols from simulations with the National Center for Atmospheric Research Community Climate Model, Version 3, J. Geophys. Res., 105(D1), 14411457, doi:10.1029/1999JD900495.
  • Kim, J., S.-C. Yoon, A. Jefferson, and S.-W. Kim (2006), Aerosol hygroscopic properties during Asian dust, pollution, and biomass burning episodes at Gosan, Korea in April 2001, Atmos. Environ., 40, 15501560.
  • Kleefeld, C., C. D. O'Dowd, S. O'Reilly, S. G. Jennings, P. Aalto, E. Becker, G. Kunz, and G. de Leeuw (2002), Relative contribution of submicron and supermicron particles to aerosol light scattering in the marine boundary layer, J. Geophys. Res., 107(D19), 8103, doi:10.1029/2000JD000262.
  • Knutson, E. O., and K. T. Whitby (1973), Aerosol classification by electric mobility: apparatus, theory, and applications, J. Aerosol Sci., 6, 443451.
  • Kotchenruther, R. A., and P. V. Hobbs (1998), Humidification factors of aerosols from biomass burning in Brazil, J. Geophys. Res., 103(D24), 32,08132,089, doi:10.1029/98JD00340.
  • Li, J., J. G. D. Wong, J. S. Dobbie, and P. Chylek (2001), Parameterization of the optical properties of sulfate aerosols, J. Atmos. Sci., 58(2), 193209.
  • Lide, D. R. (2008), Handbook of Chemistry and Physics, 89th ed., CRC Press, Boca Raton, Fla.
  • McInnes, L., M. Bergin, J. Ogren, and S. Schwartz (1998), Apportionment of light scattering and hygroscopic growth to aerosol composition, Geophys. Res. Lett., 25(4), 513516, doi:10.1029/98GL00127.
  • Mie, G. (1908), Beiträge zur Optik trüber Medien, speziell kolloidaler Metalllösungen, Ann. Phys., 25(4), 377445.
  • Nessler, R., E. Weingartner, and U. Baltensperger (2005a), Adaptation of dry nephelometer measurements to ambient conditions at the Jungfraujoch, Environ. Sci. Technol., 39, 22192228.
  • Nessler, R., E. Weingartner, and U. Baltensperger (2005b), Effect of humidity on aerosol light absorption and its implications for extinction and the single scattering albedo illustrated for a site in the lower free troposphere, J. Aerosol Sci., 36(8), 958972.
  • O'Connor, T. C., S. G. Jennings, and C. D. O'Dowd (2008), Highlights of fifty years of atmospheric aerosol research at Mace Head, Atmos. Res., 90, 338355.
  • O'Dowd, C. D., E. Becker, and M. Kulmala (2001), Midlatitude North Atlantic aerosol characteristics in clean and polluted air, Atmos. Res., 58, 167185.
  • O'Dowd, C. D., M. C. Facchini, F. Cavalli, D. Ceburnis, M. Mircea, S. Decesari, S. Fuzzi, Y. J. Yoon, and J. P. Putaud (2004), Biogenically driven organic contribution to marine aerosol, Nature, 431, 676680, 7009.
  • Orr, C.Jr., K. Hurd, and W. J. Corbett (1958), Aerosol size and relative humidity, J. Colloid Sci., 13, 472482.
  • Palmer, K. F., and D. Williams (1975), Optical constants of sulfuric acid; application to the clouds of Venus? Appl. Opt., 14(1), 208219.
  • Penner, J. E., C. C. Chuang, and K. Grant (1998), Climate forcing by carbonaceous and sulfate aerosols, Clim. Dyn., 14(12), 839851.
  • Petters, M. D., and S. M. Kreidenweis (2007), A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7(8), 19611971.
  • Smirnov, A., B. N. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore (2002), Optical properties of atmospheric aerosol in maritime environments, J. Atmos. Sci., 39, 501523.
  • Swietlicki, E., et al. (2008), Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—A review, Tellus, Ser. B, 60, 432469, doi:10.1111/j.1600-0889.2008.00350.x.
  • Tang, I. N. (1996), Chemical and size effects of hygroscopic aerosols on light scattering coefficients, J. Geophys. Res., 101(D14), 19,24519,250, doi:10.1029/96JD03003.
  • Toon, O. B., J. B. Pollack, and B. N. Khare (1976), The optical constants of several atmospheric aerosol species: Ammonium sulfate, aluminum oxide, and sodium chloride, J. Geophys. Res., 81(33), 57335748, doi:10.1029/JC081i033p05733.
  • von der Weiden, S.-L., F. Drewnick, and S. Borrmann (2009), Particle Loss Calculator—A new software tool for the assessment of the performance of aerosol inlet systems, Atmos. Meas. Tech., 2, 479494.
  • Wang, W., M. J. Rood, C. M. Carrico, D. S. Covert, P. K. Quinn, and T. S. Bates (2007), Aerosol optical properties along the northeast coast of North America during the New England Air Quality Study–Intercontinental Transport and Chemical Transformation 2004 campaign and the influence of aerosol composition, J. Geophys. Res., 112, D10S23, doi:10.1029/2006JD007579.
  • Weingartner, E., H. Saathoff, M. Schnaiter, N. Streit, B. Bitnar, and U. Baltensperger (2003), Absorption of light by soot particles: Determination of the absorption coefficient by means of aethalometers, J. Aerosol Sci., 34, 14451465.
  • WMO/GAW (2003), Aerosol measurement procedures guidelines and recommendations, GAW Rep. 153, World Meteorol. Organ., Geneva, Switzerland. (Available at http://wdca.jrc.it/data/gaw153.pdf).
  • Yan, P., X. L. Pan, J. Tang, X. J. Zhou, R. J. Zhang, and L. M. Zeng (2009), Hygroscopic growth of aerosol scattering coefficient: A comparative analysis between urban and suburban sites at winter in Beijing, Particuology, 7(1), 5260.
  • Yoon, Y. J., et al. (2007), Seasonal characteristics of the physicochemical properties of North Atlantic marine atmospheric aerosols, J. Geophys. Res., 112, D04206, doi:10.1029/2005JD007044.
  • Zieger, P., R. Fierz-Schmidhauser, M. Gysel, J. Ström, S. Henne, K. Yttri, U. Baltensperger, and E. Weingartner (2010), Effects of relative humidity on aerosol light scattering in the Arctic, Atmos. Chem. Phys., 10, 38753890.