SEARCH

SEARCH BY CITATION

References

  • Abu-Hamdeh, N. H., and R. C. Reeder (2000), Effects of density, moisture, salt concentration, and organic matter, Soil Sci. Soc. Am. J., 64, 12851290.
  • Arvidson, R. E., E. A. Guinness, M. A. Dale-Bannister, J. Adams, M. Smith, P. R. Christensen, and R. B. Singer (1989), Nature and distribution of surficial deposits in Chryse Planitia and vicinity, Mars, J. Geophys. Res., 94(B2), 15731587.
  • Baird, A. K., P. Toulmin III, B. C. Clark, H. J. Rose Jr., K. Keil, R. P. Christian, and J. L. Gooding (1976), Mineralogic and petrologic implications of Viking geochemical results from Mars: Interim report, Science, 194(4271), 12881293.
  • Binder, A. B., R. E. Arvidson, E. A. Guinness, K. L. Jones, E. C. Morris, T. A. Mutch, D. C. Pieri, and C. Sagan (1977), The geology of the Viking Lander 1 site, J. Geophys. Res., 82(28), 44394451.
  • Bishop, J. L., and E. Murad (2005), The visible and infrared spectral properties of jarosite and alunite, Am. Mineral., 90(7), 11001107.
  • Bourke, M. C., and G. Pickup (1999), Fluvial form variability in arid central Australia, in Varieties of Fluvial Form, edited by A. J. Miller, and A. Gupta, pp. 249271, Wiley, Hoboken, N. J.
  • Burns, R. G. (1986), Terrestrial analogues of the surface rocks of Mars? Nature, 320, 5556.
  • Burns, R. G. (1987), Ferric sulfates on Mars, J. Geophys. Res., 92(12), E570E574.
  • Burns, R. G. (1988), Gossans on Mars, in Proc. Lunar Planet. Sci. 18th, pp. 713721, Cambridge Univ. Press/Lunar and Planetary Inst., Houston, Tex.
  • Burns, R. G. (1993), Rates and mechanisms of chemical weathering of ferromagnesium silicate minerals on Mars, Geochim. Cosmochim. Acta, 57(19), 45554574.
  • Burns, R. G., and D. S. Fisher (1990), Iron-sulfur mineralogy of Mars: Magmatic evolution and chemical weathering products, J. Geophys. Res., 95(B9), 14,41514,421.
  • Buurman, P., B. van Lagen, and E. J. Velthorst (1996), Manual for Soil and Water Analysis, 314 pp., Backhuys Publishers, Leiden, Netherlands.
  • Christensen, P. R., and H. J. Moore (1992), The Martian surface layer, in Mars, edited by H. H. Kieffer et al., pp. 686729, Univ. of Arizona Press, Tucson, Ariz.
  • Christensen, P. R., et al. (2004), Mineralogy at Meridiani Planum from the mini-TES experiment on the Opportunity rover, Science, 306(5702), 17331739.
  • Clark, B. C., A. K. Baird, H. J. Rose Jr., P. Toulmin III, K. Keil, A. J. Castro, W. C. Kelliher, C. D. Rowe, and P. H. Evans (1976), Inorganic analyses of Martian surface samples at the Viking Landing sites, Science, 194(4271), 12831288.
  • Cremers, C. J. (1971), A thermal conductivity cell for small powdered samples, Rev. Sci. Instrum., 42(11), 16941696.
  • DeVries, D. A. (1952), The thermal conductivity of soil, Meded. Landbouwhogesch. Wageningen, 52(1), 173. (Translated by Building Research Station (Library Communication No. 759), U. K.).
  • Fergason, R. L., P. R. Christensen, J. F. Bell III, M. P. Golombek, K. E. Herkenhoff, and H. H. Kieffer (2006), Physical properties of the Mars Exploration Rover landing sites as inferred from Mini-TES-derived thermal inertia, J. Geophys. Res., 111, E02S21, doi:10.1029/2005JE002583.
  • Fountain, J. A., and E. A. West (1970), Thermal conductivity of particulate basalt as a function of density in simulated lunar and Martian environments, J. Geophys. Res., 75(20), 40634069.
  • Gellert, R., et al. (2004), Chemistry of rocks and soils in Gusev Crater from the Alpha Particle X-ray Spectrometer, Science, 305(5685), 829832.
  • Goodall, T. M., C. P. North, and K. W. Glennie (2000), Surface and subsurface sedimentary structures produced by salt crusts, Sedimentology, 47, 99118.
  • Hollands, C. B., G. C. Nanson, B. G. Jones, C. S. Bristow, D. M. Price, and T. J. Pietcsch (2006), Aeolian-fluvial interaction: Evidence for Late Quaternary channel change and wind-rift linear dune formation in the northwestern Simpson Desert, Australia, Quat. Sci. Rev., 25(1–2), 142162.
  • Hunt, G. R., J. W. Salisbury, and C. J. Lenhoff (1971), Visible and near-infrared spectra of minerals and rocks: IV. Sulphides and sulphates, Modern Geol., 3, 114.
  • Hunter, K. A., D. S. Mackie, P. W. Boyd, and G. H. McTainsh (2006), From desert to dessert: Why Australian dust matters, EOS Trans., AGU, Fall Meet. Suppl., Abstract A42C-03.
  • Hütter, E. S., N. I. Koemle, G. Kargl, and E. Kaufmann (2008), Determination of the effective thermal conductivity of granular materials under varying pressure conditions, J. Geophys. Res., 113, E12004, doi:10.1029/2008JE003085.
  • Hynek, B. M., and K. Singer (2007), Ground truth from the Opportunity Rover for Mars thermal inertia data, Geophys. Res. Lett., 34, L11201, doi:10.1029/2007GL029687.
  • Iversen, J. D., and B. R. White (1982), Saltation threshold on Earth, Mars and Venus, Sedimentology, 29, 111119.
  • Jakosky, B. M., and P. R. Christensen (1986), Global duricrust on Mars: Analysis of remote-sensing data, J. Geophys. Res., 91(B3), 35473559.
  • Johansen, O. (1975), Thermal conductivity of soils, Ph.D. Thesis, Trondheim, Norway, (CRREL Draft Translation 637, 1977), ADA 044002.
  • Kieffer, H. H., P. A. Davis, and L. A. Soderblom (1981), Mars' global properties: Maps and applications, Proc. Lunar Planet. Conf., 12B, 13951417.
  • Klingelhöfer, G., et al. (2004), Jarosite and hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer, Science, 306(5702), 17401745.
  • Lindsay, J. F. (1987), Upper proterozoic evaporates in the Amadeus basin, central Australia, and their role in basin tectonics, GSA Bull., 99(6), 852865.
  • Mellon, M. T., B. M. Jakosky, and S. E. Postawko (1997), The persistence of equatorial ground ice on Mars, J. Geophys. Res., 102(E8), 19,35719,369.
  • Mellon, M. T., B. M. Jakosky, H. H. Kieffer, and P. R. Christensen (2000), High-resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer, Icarus, 148, 437455.
  • Mellon, M. T., R. L. Fergason, and N. E. Putzig (2008), The thermal inertia of the surface of Mars, in The Martian Surface: Composition, Mineralogy, and Physical Properties, edited by J. W. Bell, pp. 399427, Cambridge Univ. Press, Cambridge, U. K.
  • Merényi, E., K. S. Edgett, and R. B. Singer (1996), Deucalionis Regio, Mars: Evidence for a new type of immobile weathered soil unit, Icarus, 124, 296307.
  • Midttømme, K., J. Saettem, and E. Roaldset (1997), Thermal conductivity of unconsolidated sediments from the Vøring Basin, Norwegian Sea, Nord. Petrol. Technol. Ser. II, 145197.
  • Moore, H. J., D. B. Bickler, J. A. Crisp, H. J. Eisen, J. A. Gensler, A. F. C. Haldemann, J. R. Matijevic, L. K. Reid, and F. Pavlics (1999), Soil-like deposits observed by Sojourner, the Pathfinder rover, J. Geophys. Res., 104(E4), 87298746.
  • Morris, R. V., et al. (2006), Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits, J. Geophys. Res., 111, E12S15, doi:10.1029/2006JE002791.
  • Mutch, T. A., et al. (1976), The surface of Mars: The view from the Viking 2 lander, Science, 194(4271), 12771283.
  • Piqueux, S. and P. R. Christensen (2009), A model of thermal conductivity for planetary soils: 2. Theory for cemented soils, J. Geophys. Res., 114, E09006, doi:10.1029/2008JE003309.
  • Presley, M. A. (1995), Thermal conductivity measurements of particulate materials: Implications for surficial units on Mars, Ph.D. Dissertation, Ariz. State Univ., Tempe.
  • Presley, M. A., and R. E. Arvidson (1988), Nature and origin of materials exposed in the Oxia Palus-Western Arabia-Sinus Meridiani region, Mars, Icarus, 75, 499517.
  • Presley, M. A., and P. R. Christensen (1997), Thermal conductivity measurements of particulate materials: 2. Results, J. Geophys. Res., 102(E3), 65516566.
  • Presley, M. A., and R. A. Craddock (2006), Thermal conductivity measurements of particulate materials: 3. Natural samples and mixtures of particle sizes, J. Geophys. Res., 111, E09013, doi:10.1029/2006JE002706.
  • Putzig, N. E., M. T. Mellon, K. A. Kretke, and R. E. Arvidson (2005), Global thermal inertia and surface properties of Mars from the MGS mapping mission, Icarus, 173, 325341.
  • Rieder, R., T. Economou, H. Wänke, A. Turkevich, J. Crisp, J. Brückner, G. Dreibus, and H. Y. McSween Jr. (1997), The chemical composition of Martian soil and rocks returned by the mobile Alpha Proton X-ray Spectrometer: Preliminary results from the X-ray mode, Science, 278(5344), 17711774.
  • Schofield, R., D. S. G. Thomas, and M. J. Kirkby (2001), Causal processes of soil salinization in Tunisia, Spain and Hungary, Land Degrad. Develop., 12, 163181.
  • Seiferlin, K., M. Heimberg, and N. Thomas (2007), The effect of soil cementation on the thermal conductivity, Geophys. Res. Abstr., 9, EGU2007-A-02361.
  • Smoluchowski, M. M. (1910), Sur la conductibilite calorifique des corps pulverizes, Bull. Int. Acad. Sci. Cacovie, 5A, 129153.
  • Squyres, S. W., et al. (2004), In-situ evidence for an ancient aqueous environment at Meridiani Planum, Mars, Science, 306(5702), 17091714.
  • U.S. Salinity Laboratory Staff (1954), chap. 6, Methods for soil characterization, in Diagnosis and Improvement of Saline and Alkali Soils, edited by L. A. Richards, Agriculture Handbook 60, 83-126, USDA, Washington, D. C.
  • Van Rooyen, M., and H. G. Winterkorn (1959), Structural and textural influences on thermal conductivity of soils, Highw. Res. Board Proc., 39, 576621.
  • Wang, A., et al. (2006), Sulfate deposition in subsurface regolith in Gusev Crater, Mars, J. Geophys. Res., 111, E02S17, doi:10.1029/2005JE002513.
  • Wechsler, A. E., and P. E. Glaser (1965), Pressure effects on postulated lunar materials, Icarus, 4, 335352.
  • Williams, G. E. (1971), Flood deposits of the sand-bed ephemeral streams of central Austrialia, Sedimentology, 17(1/2), 140.