• Arvidson, R., et al. (1976), Cosmic ray exposure ages of Apollo 17 samples and the age of Tycho, Proc. Lunar Planet. Sci. Conf. 7th, 28172832.
  • Bierhaus, E. B., et al. (2001), Pwyll secondaries and other small craters on Europa, Icarus, 153, 264276.
  • Bierhaus, E. B., C. R. Chapman, and W. J. Merline (2005), Secondary craters on Europa and implications for cratered surfaces, Nature, 437, 11251127.
  • Campbell, B. A., and D. B. Campbell (2006), Regolith properties in the south polar region of the Moon from 70 cm radar polarimetry, Icarus, 180, 17.
  • Campbell, D. B., et al. (2006), No evidence for thick deposits of ice at the lunar south pole, Nature, 443, 835837.
  • Crater Analysis Techniques Working Group (1979), Standard techniques for presentation and analysis of crater size frequency data, Icarus, 37, 467474.
  • Dundas, C. M., and A. S. McEwen (2007), Rays and secondary craters of Tycho, Icarus, 186, 3140.
  • Hawke, B. R., et al. (2004), The origin of lunar crater rays, Icarus, 170, 116.
  • Hirata, N., and A. Nakamura (2006), Secondary craters of Tycho: Size-frequency distributions and estimated fragment size-velocity relationships, J. Geophys. Res., 111, E03005, doi:10.1029/2005JE002484.
  • Hurst, M., M. P. Golombek, and R. Kirk (2004), Small crater morphology within Gusev crater and Isidis Planitia: Evidence for widespread secondaries on Mars, Lunar Planet. Sci., XXXV, Abstract 2068.
  • McEwen, A. S., et al. (2005), The rayed crater Zunil and interpretations of small impact craters on Mars, Icarus, 176, 351381.
  • Neukum, G. (1983), Meteoritenbombardement und Datierung planetarer Oberflachen. Habilitation dissertation for faculty membership, Ludwig Maximillians, University of Munich, Munich, Germany, 186 pp.
  • Neukum, G., and B. A. Ivanov (1994), Crater size distributions and impact probabilities on Earth from lunar, terrestrial planet, and asteroid cratering data, in Hazards Due to Comets and Asteroids, edited by T. Gehrels, pp. 359416, Univ. Arizona Press, Tucson, Ariz.
  • Neukum, G., and D. Wise (1976), Mars: A standard crater curve and possible new time scale, Science, 194, 13811387.
  • Neukum, G., B. A. Ivanov, and W. K. Hartmann (2001), Cratering records in the inner solar system in relation to the lunar reference system, Space Sci. Rev., 96, 5586.
  • Oberbeck, V. R., and R. H. Morrison (1973), On the formation of lunar herringbone pattern, Proc. Fourth Lunar Sci. Conf., Geochim. Cosmochim. Acta, 1, 107123, Pergamon.
  • Pike, R. J., and D. E. Wilhelms (1978), Secondary-impact craters on the Moon: Topographic form and geologic process, in Proc. Lunar Planet. Sci. Conf. 9th, p. 907909, Lunar and Planetary Institute, Houston, Tex.
  • Preblich, B. (2005), Mapping Rays and Secondary Craters from Zunil, Mars, Thesis, University of Arizona, Tucson, Ariz., 77 pp.
  • Shoemaker, E. M. (1965), Preliminary analysis of fine structure of the lunar surface in Mare Cognitum, in The Nature of the Lunar Surface, edited by Hess et al., pp. 2377, Johns Hopkins Univ. Press, Baltimore, Md.
  • Werner, S. C., B. A. Ivanov, and G. Neukum (2009), Theoretical analysis of secondary cratering on Mars and an image-based study on the Cerberus Plains, Icarus, 200, 406417.
  • Wilhelms, D. E., V. R. Oberbeck, and H. R. Aggarwal (1978), Size-frequency distributions of primary and secondary impact craters, Proc. Lunar Planet Sci. Conf., 9th, 37353762.
  • Wilhelms, D. E., et al. (1979), Relative ages of lunar basins, Reports of Planetary Geology Program, 19781979, 135137.