SEARCH

SEARCH BY CITATION

References

  • Abramov, O. (2009), Modeling hydrothermal activity associated with Martian impact craters: An overview, LPI Contrib., 1482, 910.
  • Abramov, O., and D. Kring (2005), Impact-induced hydrothermal activity on early Mars, J. Geophys. Res., 110, E12S09, doi:10.1029/2005JE002453.
  • Adams, J. (1975), Interpretation of visible and near-infrared diffuse reflectence spectra of pyroxenes and other rock-forming minerals, in Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals, edited by C. Karr Jr., pp. 91116, Academic, New York.
  • Andrews-Hanna, J. C., R. J. Phillips, and M. T. Zuber (2007a), Meridiani Planum and the global hydrology of Mars, Nature, 446, 163166, doi:10.1038/nature05594.
  • Andrews-Hanna, J. C., M. T. Zuber, and R. J. Phillips (2007b), Meridiani Planum: Implications for the hydrologic and climatic evolution of Mars, in Seventh International Conference on Mars, July 9–13, 2007, Pasadena CA [CD-ROM], LPI Contrib., 1353, Abstract 3173.
  • Arvidson, R. (1974), Windblown streaks, splotches, and associated craters on Mars: Statistical analysis of Mariner 9 photographs, Icarus, 21, 1227.
  • Arvidson, R., et al. (2005), Spectral reflectance and morphologic correlations in eastern Terra Meridiani, Mars, Science, 307, 15911594.
  • Bandfield, J. (2000), A global view of Martian surface compositions from MGS-TES, Science, 287, 16261630.
  • Bandfield, J. (2002), Global mineral distributions on Mars, J. Geophys. Res., 107(E6), 5042, doi:10.1029/2001JE001510.
  • Bell, P., H. Mao, and G. Rossman (1975), Absorption spectroscopy of ionic and molecular units in crystals and glasses, in Infrared and Raman Spectroscpy of Lunar and Terrestrial Minerals, edited by C. Karr Jr., pp. 138, Academic, New York.
  • Bellucci, G., F. Altieri, J.-P. Bibring, G. Bonello, Y. Langevin, B. Gondet, and F. Poulet (2006), OMEGA/Mars Express: Visual channel performances and data reduction techniques, Planet. Space Sci., 54, 675684.
  • Bibring, J.-P., and S. Erard (2001), The Martian surface composition, Space Sci. Rev., 96, 293316.
  • Bibring, J. P., et al. (2004), OMEGA: Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité, ESA Spec. Publ., ESA-SP 1240, 3749.
  • Bibring, J.-P., et al. (2005), Mars surface diversity as revealed by the OMEGA/Mars Express observations, Science, 307, 15761581, doi:10.1126/science.1108806.
  • Bibring, J.-P., et al. (2006), Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data, Science, 312, 400404.
  • Bishop, J., et al. (2008a), Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars, Science, 321, 830833.
  • Bishop, J. L., N. K. McKeown, E. Z. Noe Dobrea, S. L. Murchie, and J. F. Mustard (2008b), Aqueous processes and active chemistry inferred from phyllosilicate record at Mawrth Vallis, Mars, LPI Contrib., 1441, pp. 1920.
  • Bonello, G., J.-P. Bibring, F. Poulet, A. Gendrin, B. Gondet, Y. Langevin, and S. Fonti (2004), Visible and infrared spectroscopy of minerals and mixtures with the OMEGA/Mars-Express instrument, Planet. Space Sci., 52, 133140.
  • Bourke, M. C. (2005), Alluvial fans on dunes in Kaiser crater suggest niveo-aeolian and denivation processes on Mars, Lunar Planet. Sci., XXXVI, Abstract 2373.
  • Bourke, M. C., and K. S. Edgett (2006), First evidence of dune movement on Mars, Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstract P31B–0128.
  • Bourke, M., K. Edgett, and B. Cantor (2008), Recent eolian dune change on Mars, Geomorphology, 94(1–2), 247255.
  • Breed, C. S. (1977), Terrestrial analogs of the hellespontus dunes, Mars, Icarus, 30, 326340.
  • Breed, C. S., M. J. Grolier, and J. F. McCauley (1979), Morphology and distribution of common “sand” dunes on Mars: Comparison with the Earth, J. Geophys. Res., 84, 81838204.
  • Burns, R. (1970), Mineralogical Application of Crystal Field Theory, Cambridge Univ. Press, Cambridge, U. K.
  • Carr, M. H. (1973), Volcanism on Mars, J. Geophys. Res., 78, 40494062.
  • Carr, M. H., and G. D. Clow (1981), Martian channels and valleys: Their characteristics, distribution, and age, Icarus, 48, 91117, doi:10.1016/0019-1035(81)90156-1.
  • Carr, M., and J. W. Head (2009), Geologic history of Mars, Earth Planet. Sci. Lett., 294, 185203, doi:10.1016/j.epsl.2009.06.042.
  • Carr, M., and M. Malin (2000), Meter-scale characteristics of Martian channels and valleys, Icarus, 146, 366386, doi:10.1006/icar.2000.6428.
  • Chapman, M. G., A. Dumke, G. Michaels, and G. Neukum (2007), Possible glacial erosion of interior layered deposit mounds in central Candor Chasma, Eos Trans. AGU, 88(52), Fall Meet. Suppl., Abstract P31C-0547.
  • Christensen, P. (1983), Eolian intracrater deposits on Mars: Physical properties and global distribution, Icarus, 56, 496518.
  • Christensen, P. (2003), Formation of recent Martian gullies through melting of extensive water-rich snow deposits, Nature, 422, 4548.
  • Christensen, P., et al. (1998), Results from the Mars Global Surveyor Thermal Emission Imaging Spectrometer, Science, 279, 16921698.
  • Christensen, P., J. Bandfield, D. E. Smith, V. Hamilton, and R. Clark (2000), Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data, J. Geophys. Res., 105, 96099621.
  • Christensen, P., et al. (2001), Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results, J. Geophys. Res., 106, 23,82323,871.
  • Christensen, P., et al. (2003), Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results, Science, 300, 20562061.
  • Christensen, P., et al. (2004), Mineralogy at Meridiani Planum from the Mini-TES experiment on the opportunity rover, Science, 306, 17331739.
  • Deer, W., R. Howie, and J. Zussman (1963), Rock-Forming Minerals, vol. 3, Sheet Silicates, Longman, Essex, U. K.
  • Edgett, K. S. (2002), Low-albedo surfaces and eolian sediment: Mars orbiter camera views of western Arabia Terra craters and wind streaks, J. Geophys. Res., 107(E6), 5038, doi:10.1029/2001JE001587.
  • Edgett, K., and D. Blumberg (1994), Star and linear dunes on Mars, Icarus, 112, 448464, doi:10.1006/icar.1994.1197.
  • Edgett, K., and P. R. Christensen (1991), The particle size of Martian aeolian dunes, J. Geophys. Res., 96, 22,76222,776.
  • Edgett, K., and P. R. Christensen (1994), Mars aeolian sand: Regional variations among dark-hued crater floor features, J. Geophys. Res., 99, 19972018.
  • Edgett, K., and N. Lancaster (1993), Volcaniclastic aeolian dunes: Terrestrial examples and application to Martian sands, J. Arid Environ., 25, 271297.
  • Edgett, K., and M. C. Malin (2000), New views of Mars eolian activity, materials, and surface properties: Three vignettes from the Mars Global Surveyor Mars Orbiter Camera, J. Geophys. Res., 105, 16231650.
  • Erard, S., Y. Langevin, O. Forni, F. Poulet, and J. P. Bibring (2004), Olivine-rich patches observed by OMEGA, paper presented at 35th Scientific Assembly, p. 3989, Comm. on Space Res., Paris.
  • Fenton, L. (2005a), Potential sand sources for the dune fields in Noachis Terra, Mars, J. Geophys. Res., 110, E11004, doi:10.1029/2005JE002436.
  • Fenton, L. (2005b), Seasonal movement of material on dunes in proctor crater, Mars: Possible present-day sand saltation, Lunar Planet. Sci., XXXVI, Abstract 2169.
  • Fenton, L. (2006), Dune migration and slip face advancement in Rabe crater dune field, Mars, Geophys. Res. Lett., 33, L20201, doi:10.1029/2006GL027133.
  • Fenton, L. (2008), Gullies as a source of aeolian sand in the southern midlatitudes, LPI Contrib., 1303, 3637.
  • Fenton, L., and J. Bandfield (2003), Aeolian processes in Proctor crater on Mars: Sedimentary history as analyzed from multiple data sets, J. Geophys. Res., 108(E12), 5129, doi:10.1029/2002JE002015.
  • Fenton, L., and R. Hayward (2008), Southern hemisphere dunes of Mars: Morphology trends and climate change, LPI Contrib., 1403, 3536.
  • Fenton, L., and M. Mellon (2006), Thermal properties of sand from Thermal Emission Imaging Spectrometer (TES) and Thermal Emission Imaging System (THEMIS): Spatial variations within the Proctor crater dune field on Mars, J. Geophys. Res., 111, E06014, doi:10.1029/2004JE002363.
  • Fenton, L. K., R. K. Hayward, K. F. Mullins, T. N. Titus, and T. Colaprete (2007), Mars digital dune database: More preliminary science results, Lunar Planet. Sci., XXXVIII, Abstract 1486.
  • Forni, O., F. Poulet, J.-P. Bibring, S. Erard, C. Gomez, Y. Langevin, B. Gondet, and T. O. S. Team (2005), Component separation of OMEGA spectra with ica, Lunar Planet. Sci., XXXVI, Abstract 1623.
  • Fueten, F., R. M. Stesky, and P. MacKinnon (2005), Structural attitudes of large-scale layering in Valles Marineris, Mars, calculated from Mars Orbiter Laser Altimeter data and Mars Orbiter Camera imagery, Icarus, 175, 6877.
  • Gendrin, A. (2005), Sulfates in the Martian layered terrains: The OMEGA/Mars Express view, Science, 307, 15871591.
  • Golombek, M. P., and N. Bridges (2000), Erosion rates on Mars and implication for climate change: Constraints from pathfinder landing site, J. Geophys. Res., 105, 18411853.
  • Golombek, M. P., et al. (2006), Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars, J. Geophys. Res., 111, E12S10, doi:10.1029/2006JE002754.
  • Golombek, M. P., et al. (2007), Climate change on Mars from erosion rates at the Mars exploration rover landing sites, in Seventh International Conference on Mars, July 9–13, 2007, Pasadena CA [CD-ROM], LPI Contrib., 1353, Abstract 3034.
  • Greeley, R., and J. Guest (1987), Geological map of the eastern equatorial region of Mars, U.S. Geol. Surv. Misc. Invest. Map I-1802-B, 1:15,000,000.
  • Greeley, R., and J. Iversen (1985), Wind As a Geological Process on Earth, Mars, Venus and Titan, Cambridge Univ. Press, New York.
  • Greeley, R., and P. D. Spudis (1981), Volcanism on Mars, Rev. Geophys., 19, 1341.
  • Greeley, R., N. Lancaster, S. Lee, and P. Thomas (1992), Martian aeolian processes, sediments and features, in Mars, edited by H. Kieffer et al., pp. 730766, Univ. of Ariz. Press, Tucson.
  • Greeley, R., A. Skypeck, and J. Pollack (1993), Martian aeolian features and deposits: Comparisons with general circulation model results, J. Geophys. Res., 98, 31833196.
  • Greeley, R., M. Kraft, R. Sullivan, G. Wilson, N. Bridges, K. Herkenhoff, R. O. Kuzmin, M. Malin, and W. Ward (1999), Aeolian features and processes at the Mars pathfinder landing site, J. Geophys. Res., 104, 85738584, doi:10.1029/98JE02553.
  • Grégoire, M., D. Baratoux, N. Mangold, O. Arnalds, B. Platvoet, J. Bardinzeff, and P. Pinet (2007), Which processes form the volcanic sands on Mars? Eos Trans. AGU, 88(52), Fall Meet. Suppl., Abstract P31C-0551.
  • Gwinner, K., F. Scholten, B. Giese, J. Oberst, R. Jaumann, M. Spiegel, R. Schmidt, and G. Neukum (2005), Hochaufloesende Gelaendemodelle auf der Grundlage von Mars Express HRSC-Daten, Photogramm. Fernerkundung Geoinf., 5, 387394.
  • Gwinner, K., F. Scholten, M. Spiegel, R. Schmidt, B. Giese, J. Oberst, C. Heipke, R. Jaumann, and G. Neukum (2009a), Derivation and validation of high-resolution digital terrain models from Mars Express HRSC data, Photogramm. Eng. Remote Sens., 75(9), 11271142.
  • Gwinner, K., et al. (2009b), Topography of Mars from global mapping by HRSC high-resolution digital terrain 2 models and orthoimages: Characteristics and performance, Earth Planet. Sci. Lett., 294, 506519, doi:10.1016/j.epsl.2009.11.007.
  • Hartmann, W., and G. Neukum (2001), Cratering chronology and the evolution of Mars, Space Sci. Rev., 96, 165194.
  • Hauber, E., et al. (2006), Geomorphological and mineralogical mapping of Hebes Chasma, Mars, paper presented at European Planetary Science Congress 2006, p. 332, Berlin.
  • Hayward, R., K. Mullins, L. Fenton, T. Hare, T. Titus, M. Bourke, A. Colaprete, and P. Christensen (2007a), Mars Global Digital Dune Database: MC2-MC29, U.S. Geol. Surv. Open File Rep., 2007-1158.
  • Hayward, R. K., K. F. Mullins, L. K. Fenton, T. M. Hare, T. N. Titus, M. C. Bourke, A. Colaprete, and P. R. Christensen (2007b), Mars Global Digital Dune Database and initial science results, J. Geophys. Res., 112, E11007, doi:10.1029/2007JE002943.
  • Head, J., et al. (2001), Geological processes and evolution, Space Sci. Rev., 96, 263292.
  • Hoefen, T., R. Clark, J. Bandfield, M. Smith, J. Pearl, and P. Christensen (2003), Discovery of olivine in the Nili Fossae region of Mars, Science, 302, 627630, doi:10.1126/science.1089647.
  • Hoke, M. R. T., and B. M. Hynek (2009a), Valley network formation on the ancient highlands of Mars occurred in the late Noachian and early Hesperian epochs, Lunar Planet. Sci., XL, Abstract 1885.
  • Hoke, M. T., and B. Hynek (2009b), Roaming zones of precipitation on ancient Mars as recorded in valley networks, J. Geophys. Res., 114, E08002, doi:10.1029/2008JE003247.
  • Hynek, B. M., and R. J. Phillips (2001a), The enigmantic Arabia Terra, Mars, in Field Trip and Workshop on the Martian Highlands and Mojave Desert Analogs, edited by A. D. Howard, LPI Contrib., 1101, Abstract 4017.
  • Hynek, B. M., and R. J. Phillips (2001b), The role of water in the evolution of the enigmatic Arabia Terra, Mars, Eos Trans. AGU, 82(47) Fall Meet. Suppl., Abstract P22A-0538.
  • Hynek, B., R. Arvidson, and R. Phillips (2002), Geologic setting and origin of Terra Meridiani hematite deposit on Mars, J. Geophys. Res., 107(E10), 5088, doi:10.1029/2002JE001891.
  • Iversen, J., and B. White (1982), Saltation thresholds on Earth, Mars, and Venus, Sedimentology, 29, 111119.
  • Jacobshagen, V., J. Arndt, H.-J. Goetze, D. Mertmann, and C. Wallfass (2000), Einfuehrung in die Geologischen Wissenschaften, Eugen Ulmer, Stuttgart, Germany.
  • Jaumann, R. (2003), Die Erosionsmorphologie des Mars: Genese, Verteilung und Stratigraphie von Erosionsformen und deren klimatische Bedeutung, DLR Forschungsbericht 2003-20, habilitation dissertation, Ludwig-Maximilians Univ., Munich, Germany.
  • Jaumann, R., et al. (2006), Dark materials in Martian craters, Lunar Planet. Sci., XXXVII, Abstract 1735.
  • Jaumann, R., et al. (2007), The high-resolution stereo camera (HRSC) experiment on Mars Express: Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission, Planet. Space Sci., 55, 928952.
  • Jaumann, R., A. Nass, D. Tirsch, D. Reiss, and G. Neukum (2009), The western Libya Montes valley system on Mars: Evidence for episodic and multi-genetic erosion events during the Martian history, Earth Planet. Sci. Lett., 294, 272290.
  • Jouglet, D., F. Poulet, R. E. Milliken, J. F. Mustard, J. P. Bibring, Y. Langevin, B. Gondet, and C. Gomez (2007), Hydration state of the Martian surface as seen by Mars Express OMEGA: 1. Analysis of the 3 μm hydration feature, J. Geophys. Res., 112, E08S06, doi:10.1029/2006JE002846.
  • Komar, P. D. (1980), Modes of sediment transport in channelized water flows with ramifications to the erosion of the Martian outflow channels, Icarus, 42, 317329, doi:10.1016/0019-1035(80)90097-4.
  • Lanz, J. (2004), Geometrische, morphologische und stratigraphische Untersuchungen ausgewählter Outflow Channel der Circum-Chryse-Region, Mars, mit Methoden der Fernerkundung, DLR Forschungsbericht 2004-02, Ph.D. dissertation, Freie Univ., Berlin.
  • Loizeau, D., et al. (2007a), Stratigraphic correlation between the clays of the region of Mawrth Vallis as detected by OMEGA, and HRSC color images and DTM, in Seventh International Conference on Mars, July 9–13, 2007, Pasadena CA [CD-ROM], LPI Contrib., 1353, Abstract 3131.
  • Loizeau, D., et al. (2007b), Phyllosilicates in the Mawrth Vallis region of Mars, J. Geophys. Res., 112, E08S08, doi:10.1029/2006JE002877.
  • Loizeau, D., et al. (2008), Stratigraphy of the Mawrth Vallis region through omega, HRSC color imagery and DTM, Lunar Planet. Sci., XXXIX, Abstract 1586.
  • Lucey, P., and R. Clark (1984), Spectral properties of water ice and contaminants, in Ices in the Solar System, edited by J. Klinger et al., pp. 155168, Reidel, Dordrecht, Netherlands.
  • Malin, M., and K. Edgett (2001), Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission, J. Geophys. Res., 106, 23,42923,570.
  • Malin, M. C., G. E. Danielson, A. P. Ingersoll, H. Masursky, J. Veverka, M. A. Ravine, and T. A. Soulanille (1992), Mars observer camera, J. Geophys. Res., 97, 76997718.
  • Mangold, N., et al. (2007), Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust, J. Geophys. Res., 112, E08S04, doi:10.1029/2006JE002835.
  • Mangold, N., D. Loizeau, A. Gaudin, V. Ansan, J. Michalski, F. Poulet, and J. P. Bibring (2010a), Connecting fluvial landforms and the stratigraphy of Mawrth Vallis phyllosilicates: Implications for chronology and alteration processes, LPI Contrib., 1547, Abstract 6010.
  • Mangold, N., D. Baratoux, O. Arnalds, J. M. Bardintzeff, B. Platvoët, M. Grégoire, and P. Pinet (2010b), Segregation of olivine grains in volcanic sands in Iceland: Implications for Mars, LPI Contrib., 1552, 4748.
  • Marchenko, A. G., A. T. Basilevsky, H. Hoffmann, E. Hauber, A. C. Cook, and G. Neukum (1998), Geology of the common mouth of the Ares and Tiu Valles, Mars, Solar Syst. Res., 32, 425452.
  • Markl, G. (2004), Minerale und Gesteine: Eigenschaften, Bildung, Untersuchung, Spektrum, Munich, Germany.
  • Masursky, H., J. Boyce, A. Dial, G. Schaber, and M. Strobell (1977), Classification and time of formation of Martian channels based on Viking data, J. Geophys. Res., 82, 40164038.
  • Matthes, M. (2001), Mineralogie: Eine Einfuehrung in die spezielle Mineralogie, Petrologie und Lagerstaettenkunde, Springer, Berlin.
  • McCauley, J., M. Carr, J. Cutts, W. Hartmann, H. Masursky, D. Milton, R. Sharp, and D. Wilhelms (1972), Preliminary Mariner 9 report on the geology of Mars, Icarus, 17, 289327.
  • McCord, T., and R. Clark (1978), Mars: Near-infrared spectra reflectance and compositional implications, J. Geophys. Res., 83, 54335441.
  • McEwen, A., et al. (2007), Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE), J. Geophys. Res., 112, E05S02, doi:10.1029/2005JE002605.
  • Michalski, J. R., E. Z. Noe Dobrea, R. Fergason, and M. Golombek (2007), Geologic mapping of the Mawrth Vallis region, Mars: Clues to the origin of clay mineral deposits, Lunar Planet. Sci., XXXVIII, Abstract 1065.
  • Mullins, K., R. Hayward, T. Titus, M. Bourke, and L. Fenton (2005), Mars Digital Dune Database: A quantitative look at the geographic distribution of dunes on Mars, Lunar Planet. Sci., XXXVI, Abstract 1986.
  • Murchie, S., et al. (2004), CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) on MRO (Mars Reconnaissance Orbiter), Proc. SPIE, 5660, 6677, doi:10.1117/12.578976.
  • Mustard, J. F. (2002), A wet and altered Mars, Nature, 417, 234235.
  • Mustard, J. F., F. Poulet, A. Gendrin, J. P. Bibring, Y. Langevin, B. Gondet, N. Mangold, G. Bellucci, and F. Altieri (2005), Olivine and pyroxene diversity in the crust of Mars, Science, 307, 15941597, doi:10.1126/science.1109098.
  • Mustard, J. F., F. Poulet, J. Head, N. Mangold, J.-P. Bibring, S. Pelkey, C. Fassett, Y. Langevin, and G. Neukum (2007), Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian, J. Geophys. Res., 112, E08S03, doi:10.1029/2006JE002834.
  • Nedell, S. S., S. W. Squyres, and D. W. Andersen (1987), Origin and evolution of the layered deposits in the Valles Marineris, Mars, Icarus, 70, 409441, doi:10.1016/0019-1035(87)90086-8.
  • Nelson, D., and R. Greeley (1999), Geology of Xanthe Terra outflow channels and the Mars Pathfinder landing site, J. Geophys. Res., 104, 86538670, doi:10.1029/98JE01900.
  • Neukum, G., and K. Hiller (1981), Martian ages, J. Geophys. Res., 86, 30973121.
  • Neukum, G., R. Jaumann, the HRSC Co-Investigator and Experiment Team (2004a), HRSC: The High Resolution Stereo Camera of Mars Express, Eur. Space Agency Spec. Publ., ESA SP-1240, 119.
  • Neukum, G., et al. (2004b), Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera, Nature, 432, 971979.
  • Pelkey, S. M., et al. (2007), CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance, J. Geophys. Res., 112, E08S14, doi:10.1029/2006JE002831.
  • Pieters, C. (1977), Characterization and distribution of lunar mare basalt types using remote sensing techniques, Ph.D. dissertation, Mass. Inst. of Technol., Cambridge.
  • Poulet, F., and S. Erard (2004), Nonlinear spectral mixing: Quantitative analysis of laboratory mineral mixtures, J. Geophys. Res., 109, E02009, doi:10.1029/2003JE002179.
  • Poulet, F., J. P. Bibring, J. F. Mustard, A. Gendrin, N. Mangold, Y. Langevin, R. E. Arvidson, B. Gondet, and C. Gomez (2005), Phyllosilicates on Mars and implications for early Martian climate, Nature, 438, 623627, doi:10.1038/nature04274.
  • Poulet, F., C. Gomez, J. P. Bibring, Y. Langevin, B. Gondet, P. Pinet, G. Belluci, and J. Mustard (2007), Martian surface mineralogy from Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité on board the Mars Express spacecraft (OMEGA/MEX): Global mineral maps, J. Geophys. Res., 112, E08S02, doi:10.1029/2006JE002840.
  • Poulet, F., R. Arvidson, C. Gomez, R. Morris, J.-P. Bibring, Y. Langevin, B. Gondet, and J. Griffes (2008), Mineralogy of Terra Meridiani and western Arabia Terra from OMEGA/MEX and implications for their formation, Icarus, 195, 106130.
  • Poulet, F., et al. (2009a), Quantitative compositional analysis of Martian mafic regions using the MEX/OMEGA reflectance data: 2. Petrological implications, Icarus, 201, 84101, doi:10.1016/j.icarus.2008.12.042.
  • Poulet, F., et al. (2009b), Quantitative compositional analysis of Martian mafic regions using the MEx/OMEGA reflectance data: 1. Methodology, uncertainties and examples of application, Icarus, 201, 6983, doi:10.1016/j.icarus.2008.12.025.
  • Roach, L. H., et al. (2007), Sulfate identification in East Candor, Valles Marineris with CRISM visible-infrared spectra, Lunar Planet. Sci., XXXVIII, Abstract 2106.
  • Rogers, D., and P. Christensen (2003), Age relationship of basaltic and andesitic surface compositions on Mars: Analysis of high-resolution TES observations of the northern hemisphere, J. Geophys. Res., 108(E4), 5030, doi:10.1029/2002JE001913.
  • Ruff, S. W., and P. Christensen (2002), Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data, J. Geophys. Res., 107(E12), 5127, doi:10.1029/2001JE001580.
  • Sagan, C., et al. (1972), Variable features on Mars: Preliminary Mariner 9 television results, Icarus, 17, 346372.
  • Schatz, V., H. Tsoar, K. Edgett, and E. Parteli (2006), Evidence for indurated sand dunes in the Martian north polar region, J. Geophys. Res., 111, E04006, doi:10.1029/2005JE002514.
  • Scholten, F., et al. (2005), Mars Express HRSC data processing: Methods and operational aspects, Photogramm. Eng. Remote Sens., 71(10), 11431152.
  • Schultz, P., and J. Mustard (2004), Impact melts and glasses on Mars, J. Geophys. Res., 109, E01001, doi:10.1029/2002JE002025.
  • Scott, D., and K. Tanaka (1986), Geology map of the western equatorial region of Mars, U.S. Geol. Surv. Misc. Invest. Map, I-1802-A, 1:15,000,000.
  • Shkuratov, Y., L. Starukhina, H. Hoffmann, and G. Arnold (1999), A model of spectral albedo of particulate surfaces: Implications for optical properties of the moon, Icarus, 137, 235246.
  • Silverglate, P. R., and D. E. Fort (2004), System design of the CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) hyperspectral imager, Proc. SPIE, 5159, 283290, doi:10.1117/12.504876.
  • Silverglate, P., et al. (2004), Compact Reconnaissance Imaging Spectrometer for Mars (CRISM): Characterization results for instrument and focal plane subsystems, Proc. SPIE, 5563, 98110, doi:10.1117/12.559882.
  • Silvestro, S., L. K. Fenton, and D. A. Vaz (2010), Ripple migration and small modifications of active dark dunes in Nili Patera (Mars), Lunar Planet. Sci., XLI, Abstract 1820.
  • Singer, R. B. (1980a), The dark materials on Mars: I. new information from reflectance spectroscopy on the extent and mode of oxidation, Proc. Lunar Planet. Sci. Conf., 11th, 10451047.
  • Singer, R. B. (1980b), The composition of the Martian dark regions: Observations and analysis, Ph.D. dissertation, Univ. of Hawaii, Honolulu.
  • Singer, R. B., and T. B. McCord (1979), Mars: Large-scale mixing of bright and dark materials and properties of dark material, Proc. Lunar Planet. Sci. Conf., 10th, 11281130.
  • Singer, R. B., and T. L. Roush (1983), Spectral reflectance properties of particulate weathered coatings on rocks: Laboratory modeling and applicability to Mars, Proc. Lunar Planet. Sci. Conf., 14th, 708709.
  • Sowe, M., E. Hauber, R. Jaumann, K. Gwinner, F. Fueten, R. Stesky, and G. Neukum (2007), Interior layered deposits in the eastern Valles Marineris and Chaotic Terrains on Mars, Lunar Planet. Sci., XXXVIII, Abstract 1568.
  • Stoeffler, D., G. Ryder, B. Ivanov, N. Artemieva, M. Cintala, and R. Grieve (2006), Cratering history and lunar chronology, in New Views of the Moon, edited by B. Jolliff et al., pp. 519588, Mineral. Soc. of Am., Chantilly, Va.
  • Tanaka, K., D. Scott, and R. Greeley (1992), Global stratigraphy, in Mars, edited by H. Kiefer et al., pp. 345382, Univ. of Ariz. Press, Tucson.
  • Tanaka, K., J. Rodriguezb, J. Skinner Jr., M. Bourke, C. Fortezzo, K. Herkenhoff, E. Kolb, and C. Okubo (2008), North polar region of Mars: Advances in stratigraphy, structure, and erosional modification, Icarus, 196, 318358.
  • Thomas, P. (1984), Martian intracrater spotches: Occurrence, morphology, and colors, Icarus, 57, 205227.
  • Thomas, P., J. Veverka, S. Lee, and A. Bloom (1981), Classification of wind streaks on Mars, Icarus, 45, 124153.
  • Tirsch, D. (2009), Dark dunes on Mars: Analyses on origin, morphology and mineralogical composition of the dark material in Martian craters, Ph.D. dissertation, Freie Univ., Berlin.
  • Tirsch, D., R. Jaumann, D. Reiss, J. Helbert, F. Forget, E. Millour, F. Poulet, and G. Neukum (2007), Dark dunes in Martian craters, Lunar Planet. Sci., XXXVIII, Abstract 1569.
  • Tirsch, D., R. Jaumann, A. Pacifici, F. Poulet, L. H. Roach, J. F. Mustard, J. P. Bibring, and G. Neukum (2009), Dark layers as local sources for the dark intra-crater dunes on Mars, Lunar Planet. Sci., XL, Abstract 1004.
  • Werner, S. (2006), Major aspects of the chronostratigraphy and geologic evolutionary history of Mars, Ph.D. dissertation, Freie Univ., Berlin.
  • Wrobel, K. E., and P. H. Schultz (2004), Effect of planetary rotation on distal tektite deposition on Mars, J. Geophys. Res., 109, E05005, doi:10.1029/2004JE002250.
  • Wrobel, K. E., and P. H. Schultz (2006), The generation and distribution of Martian impact melt/glass: A computational study with implications for the nature of dark surface materials, Lunar Planet. Sci., XXXVII, Abstract 2386.
  • Wrobel, K. E., and P. H. Schultz (2007), The significant contribution of impact glass to the Martian surface record, in Seventh International Conference on Mars, July 9–13, 2007, Pasadena CA [CD-ROM], LPI Contrib., 1353, Abstract 3093.
  • Wyatt, M. B., and H. McSween Jr. (2002), Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars, Nature, 417, 263266.
  • Wyatt, M., V. Hamilton, H. McSween Jr., P. Christensen, and L. Taylor (2001), Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy: 1. Determination of mineralogy, chemistry and classification strategies, J. Geophys. Res., 106, 14,71114,732.
  • Zimbelman, J. (2000), Non-active dunes in the Acheron Fossae region of Mars between the Viking and Mars Global Surveyor eras, Geophys. Res. Lett., 27(7), 10691072.
  • Zuber, M., D. Smith, R. Phillips, S. Solomon, W. Banerdt, G. Neumann, and O. Aharonson (1998), Shape of the northern hemisphere of Mars from the Mars Orbiter Laser Altimeter (MOLA), Geophys. Res. Lett., 25(24), 43934396.