SEARCH

SEARCH BY CITATION

References

  • Aucott, M. L., A. D. Caldarelli, R. R. Zsolway, C. B. Pietarinen, and R. England (2009), Ambient elemental, reactive gaseous, and particle-bound mercury concentrations in New Jersey, U.S.: Measurements and associations with wind direction, Environ. Monit. Assess., doi:10.1007/s10661-008-0583-0.
  • Bahlmann, E., R. Ebinghaus, and W. Ruck (2004), Influence of solar radiation on mercury emission fluxes from soils, Mater. Geoenviron., 51, 787790.
  • Baillie, P. W. (1986), Oxygenation of intertidal estuarine sediments by benthic microalgal photosynthesis, Estuarine Coastal Shelf Sci., 22, 143149.
  • Bloom, N. S., and E. A. Crecelius (1983), Determination of mercury in seawater at sub-nanogram per liter levels, Mar. Chem., 14, 4989.
  • Bothner, M. H., R. A. Jahnke, M. L. Peterson, and R. Carpenter (1980), Rate of mercury loss from contaminated estuarine sediments, Geochim. Cosmochim. Acta, 44, 273285.
  • Cai, Y., R. Jaffe, and R. Jones (1997), Ethylmercury in the soils and sediments of the Florida Everglades, Environ. Sci. Technol., 31, 302305.
  • Canario, J., and C. Vale (2004), Rapid release of mercury from intertidal sediments exposed to solar radiation: A field experiment, Environ. Sci. Technol., 38, 39013907.
  • Carpi, A., and S. E. Lindberg (1997), The sunlight mediated emission of elemental mercury from soil amended with municipal sewage sludge, Environ. Sci. Technol., 31, 20852091.
  • Dahl, T. E. (1990), Wetlands losses in the United States 1780's to 1980's, l3 pp., Fish and Wildlife Serv., U.S. Dep. of the Inter., Washington, D. C.,
  • Drobner, E., H. Huber, C. Wachterhauser, D. Rose, and K. Stetter (1990), Pyrite formation linked with hydrogen evolution under anaerobic conditions, Nature, 346, 742744.
  • Dyer, A. J., and B. B. Hicks (1970), Flux-gradient relationships in the constant flux layer, Q. J. R. Meteorol. Soc., 96, 715721.
  • Edwards, G. C., P. E. Rasmussen, W. H. Schroeder, D. M. Wallace, L. Halfpenny-Mitchell, G. M. Dias, R. J. Kemp, and S. Ausma (2005), Development and evaluation of a sampling system to determine gaseous mercury fluxes using an aerodynamic micrometeorological gradient method, J. Geophys. Res., 110, D10306, doi:10.1029/2004JD005187.
  • Ericksen, J. A., M. S. Gustin, M. Xing, P. J. Weisberg, and G. C. J. Fernandez (2006), Air-soil exchange of mercury from background soils in the United States, Sci. Total Environ., 366, 851863.
  • Feng, X., S. Wang, G. Qui, Y. Hou, and S. Tang (2005), Total gaseous mercury emissions from soil in Guiyang, Guizho, China, J. Geophys. Res., 110, D14306, doi:10.1029/2004JD005643.
  • Fitzgerald, W. F., and G. A. Gill (1979), Subnanogram determination of mercury by two-stage gold amalgamation and gas phase detection applied to atmospheric analysis, Anal. Chem., 51(11), 17141720.
  • Fitzgerald, W., and R. Mason (1996), The global mercury cycle: Oceanic and anthropogenic aspects, in Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances, edited by W. Baeyens et al., pp. 85108, Kluwer Acad., Dordrecht, Netherlands.
  • Gilmour, C. C., and E. A. Henry (1991), Mercury methylation in aquatic systems affected by acid deposition, Environ. Pollut., 71, 131169.
  • Gilmour, C. C., E. A. Henry, and R. Mitchell (1992), Sulfate stimulation of mercury methylation in freshwater sediments, Environ. Sci. Technol., 26, 22812287.
  • Gobeil, C., and D. Cossa (1993), Mercury in sediments and sediment pore water in the Laurentian Trough, Can. J. Fish. Aquat. Sci., 50, 17941800.
  • Goodrow, S., R. Miskewitz, R. I. Hires, S. J. Eisenreich, W. S. Douglas, and J. R. Reinfelder (2005), Mercury emissions from cement-stabilized dredged material, Environ. Sci. Technol., 39, 81858190.
  • Gustin, M. S., G. E. Taylor Jr., and R. A. Maxey (1997), Effect of temperature and air movement on the flux of elemental mercury from substrate to the atmosphere, J. Geophys. Res., 102, 38913898.
  • Gustin, M. S., S. E. Lindberg, K. Austin, M. Coolbaugh, A. Vette, and H. Zhang (2000), Assessing the contribution of natural sources to regional mercury budgets, Sci. Total Environ., 259, 6172.
  • Gustin, M. S., H. Biester, and C. S. Kim (2002), Investigation of the light-enhanced emission of mercury from naturally enriched substrate, Atmos. Environ., 36, 32413254.
  • Gustin, M. S., et al. (2003), Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains, Environ. Geol., 43, 339351.
  • Hammerschmidt, C. R., W. F. Fitzgerald, P. H. Balcom, and P. T. Visscher (2008), Organic matter and sulfide inhibit methylmercury production in sediments of New York/New Jersey Harbor, Mar. Chem., 109, 165182.
  • Hanson, P. J., S. E. Lindberg, T. A. Tabberer, J. G. Owens, and K.-H. Kim (1995), Foliar exchange of mercury vapor: Evidence for a compensation point, Water Air Soil Pollut., 80, 373382.
  • Hung, G. A., and G. L. Chmura (2006), Mercury accumulation in surface sediments of salt marshes of the Bay of Fundy, Environ. Pollut., 142, 418431.
  • Kaplan, D. I., A. S. Knox, and J. Myers (2002), Mercury geochemistry in a wetland and its implications for in situ remediation, J. Environ. Eng., 128(8), 723732.
  • Kim, K.-H., and M.-Y. Kim (1999), The exchange of gaseous mercury across soil-air surface interface in a residential area of Seoul, Korea, Atmos. Environ., 33, 31533165.
  • Kim, K.-H., and S. E. Lindberg (1995), Design and initial tests of a dynamic enclosure chamber for measurements of vapor-phase mercury fluxes over soils, Water Air Soil Pollut., 80, 10591068.
  • Kim, K.-H., S. E. Lindberg, and T. P. Meyers (1995), Micrometeorological measurements of mercury vapor fluxes over background forest soils in eastern Tennessee, Atmos. Environ., 29, 267282.
  • Kramer, K. J. M., R. Misdorp, G. Berger, and R. Duijts (1991), Maximum pollutant concentrations at the wrong depth: A misleading pollution history in a sediment core, Mar. Chem., 36, 183198.
  • Lamborg, C. H., W. F. Fitzgerald, J. O'Donnel, and T. Torgersen (2002), A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients, Geochim. Cosmochim. Acta, 66, 11051118.
  • Lee, X., G. Benoit, and X. Z. Hu (2000), Total gaseous mercury concentration and flux over a coastal saltmarsh vegetation in Connecticut, USA, Atmos. Environ., 34, 42054213.
  • Lefebvre, D. D., D. Kelly, and K. Budd (2007), Biotransformation of Hg (II) by cyanobacteria, Appl. Environ. Microbiol., 73, 243249.
  • Leonard, T. L., G. E. Taylor, M. S. Gustin, and G. C. J. Fernandez (1998a), Mercury and plants in contaminated soils: 1. Uptake, partitioning, and emission to the atmosphere, Environ. Toxicol. Chem., 17, 20632071.
  • Leonard, T. L., G. E. Taylor, M. S. Gustin, and G. C. J. Fernandez (1998b), Mercury and plants in contaminated soils: 2. Environmental and physiological factors governing mercury flux to the atmosphere, Environ. Toxicol. Chem., 17, 20722079.
  • Lin, C., and S. O. Pehkonen (1999), The chemistry of atmospheric mercury: A review, Atmos. Environ., 33, 20672079.
  • Lindberg, S. E. (1996), Forests and the global biogeochemical cycle of mercury: The importance of understanding air/vegetation exchange processes, in Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balance, vol. 21, pp. 359380, Kluwer Acad., Dordrecht, Netherlands.
  • Lindberg, S. E., and T. P. Meyers (2001), Development of an automated micrometeorological method for measuring the emission of mercury vapor from wetland vegetation, Wetlands Ecol. Manage., 9, 333347.
  • Lindberg, S. E., K.-H. Kim, T. P. Meyers, and J. G. Owens (1995), Micrometeorological gradient approach for quantifying air-surface exchange of mercury-vapor—Tests over contaminated soils, Environ. Sci. Technol., 29, 126135.
  • Lindberg, S. E., W. Dong, and T. Meyers (2002), Transpiration of gaseous elemental mercury through vegetation in a sub-tropical wetland in Florida, Atmos. Environ., 36, 52075219.
  • Majewski, M., M. McChesney, and J. Seiber (1991), A field comparison of two methods for measuring DCPA soil evaporation rates, Environ. Toxicol. Chem., 10, 301311.
  • Mantoura, R. F. C., A. Dickson, and J. P. Riley (1978), The complexation of metals with humic materials in natural waters, Estuarine Coastal Shelf Sci., 6, 387408.
  • Maricle, B. R., R. W. Lee, C. E. Hellquist, O. Kiirats, and G. E. Edwards (2007), Effects of salinity on chlorophyll fluorescence and CO2 fixation in C-4 estuarine grasses, Photosynthesis, 45, 433440.
  • Mason, R. P., and G.-R. Sheu (2002), Role of the ocean in the global mercury cycle, Global Biogeochem. Cycles, 16(4), 1093, doi:10.1029/2001GB001440.
  • Meyers, T. P., M. E. Hall, S. E. Lindberg, and K. Kim (1996), Use of the modified Bowen-ratio technique to measure fluxes of trace gases, Atmos. Environ., 30(19), 33213329.
  • Morse, J. W., and G. W. Luther (1999), Chemical influences on trace metal-sulfide interactions in anoxic sediments, Geochim. Cosmochim. Acta, 63, 33733378.
  • Nriagu, J. O. (1994), Mechanistic steps in the photoreduction of mercury in natural-waters, Sci. Total Environ., 154, 18.
  • Obukhov, A. M. (1946), Turbulence in an atmosphere of non-homogeneous temperature, Trans. Inst. Theoret. Geophys. USSR, 1, 95115.
  • O'Driscoll, N. J., L. Poissant, J. Canario, J. Ridal, and D. R. S. Lean (2007), Continuous analysis of dissolved gaseous mercury and mercury volatilization in the Upper St. Lawrence River: Exploring temporal relationships and UV attenuation, Environ. Sci. Technol., 41, 53425348.
  • Poissant, L., and A. Casimir (1998), Water–air and soil–air exchange rate of total gaseous mercury measured at background sites, Atmos. Environ., 32(5), 883893.
  • Poissant, L., M. Pilote, X. Xu, and H. Zhang (2004), Atmospheric mercury speciation and deposition in the Bay St. Francois wetlands, J. Geophys. Res., 109, D11301, doi:10.1029/2003JD004364.
  • Robbins, J. A., and D. N. Edgington (1975), Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137, Geochim. Cosmochim. Acta, 39, 285304.
  • Rolfhus, K. R., and W. F. Fitzgerald (2001), The evasion and spatial/temporal distribution of mercury species in Long Island Sound, CT-NY, Geochim. Cosmochim. Acta, 65, 407418.
  • Schroeder, W. H., G. Keeler, H. Kock, P. Roussel, D. Schneeberger, and F. Schaedlich (1995), International field intercomparison of atmospheric mercury measurement methods, Water Air Soil Pollut., 80, 611620.
  • Sheu, G.-R., and R. P. Mason (2001), An examination of the methods for the measurement of reactive gaseous mercury in the atmosphere, Environ. Sci. Technol., 35, 12091216.
  • Stedman, S., and T. E. Dahl (2008), Status and trends of wetlands in the coastal watersheds of the eastern United States 1998 to 2004, 32 pp., Natl. Mar. Fish. Serv., Natl. Oceanic and Atmos. Admin., Silver Spring, Md.,
  • Thornthwaite, C. W., and B. Holzman (1939), The determination of evaporation from land and water surfaces, Mon. Weather Rev., 67, 411.
  • Tiner, R. W. (1987), A Field Guide to Coastal Wetland Plants of the Northeastern United States, 285 pp., Univ. of Mass. Press, Amherst.
  • Voznesenskaya, E. V., S. D. X. Chuong, N. K. Koteyeva, V. R. Franceschi, H. Freitag, and G. E. Edwards (2007), Structural, biochemical, and physiological characterization of C-4 photosynthesis in species having two vastly different types of Kranz anatomy in Genus Suaeda (Chenopodiaceae), Plant Biol., 9, 745757.
  • Walcek, C., S. De Santis, and T. Gentile (2003), Preparation of mercury emissions inventory for eastern North America, Environ. Pollut., 123, 375381.
  • Wollenberg, J. L., and S. C. Peters (2009), Mercury emission from a temperate lake during autumn turnover, Sci. Total Environ., 407, 29092918.
  • Zhang, H., and S. E. Lindberg (1999), Processes influencing the emission of mercury from soils: A conceptual model, J. Geophys. Res., 104, 21,88921,896.
  • Zhuang, Y. (2003), Atmospheric deposition of trace elements in the New Jersey Atmospheric Deposition Network (NJADN), Ph.D. dissertation, 200 pp., Rutgers Univ., New Brunswick, N. J.,
  • Zillioux, E. J., D. B. Porcella, and J. M. Benoit (1993), Mercury cycling and effects in freshwater wetland ecosystems, Environ. Toxicol. Chem., 12, 22452264.