SEARCH

SEARCH BY CITATION

References

  • Belzile, C., and L. Guo (2006), Optical properties of low molecular weight and colloidal organic matter: Application of the ultrafiltration permeation model to DOM absorption and fluorescence, Mar. Chem., 98, 183196.
  • Benner, R. (1991), Ultrafiltration for the concentration of bacteria, viruses, and dissolved organic matter, in Marine Particles: Analysis and Characterization, Geophys. Monogr. Ser., vol. 63, edited by D. C. Hurd, and D. W. Spencer, pp. 181185, AGU, Washington, D. C.,
  • Blough, N. V., and R. del Vecchio (2002), Chromophoric DOM in the coastal environment, in Biogeochemistry of Marine Dissolved Organic Matter, edited by D. A. Hansell, and C. A. Carlson, pp. 509546, Academic, San Diego, Calif.,
  • Boyd, T. J., and C. L. Osburn (2004), Changes in CDOM fluorescence from allochthonous and autochthonous sources during tidal mixing and bacterial degradation in two coastal estuaries, Mar. Chem., 89, 189210.
  • Boynton, W. R., J. H. Garber, R. Summers, and W. M. Kemp (1995), Inputs, transformations, and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries, Estuaries, 18, 285314.
  • Cabaniss, S. E., and M. S. Shuman (1987), Synchronous fluorescence-spectra of natural-waters: Tracing sources of dissolved organic-matter, Mar. Chem., 21, 3750.
  • Chen, W., P. Westerhoff, J. A. Leenheer, and K. Booksh (2003), Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter, Environ. Sci. Technol., 37, 57015710.
  • Church, T. M. (1986), Biogeochemical factors influencing the residence time of microconstituents in a large tidal estuary, Delaware Bay, Mar. Chem., 18, 393406.
  • Coble, P. G. (1996), Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy, Mar. Chem., 51, 325346.
  • Coble, P. G., S. A. Green, N. V. Blough, and R. B. Gagosian (1990), Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy, Nature, 348, 432435.
  • Coble, P. G., C. A. Schultz, and K. Mopper (1993), Fluorescence contouring analysis of DOC intercalibration experiment samples—A comparison of techniques, Mar. Chem., 41, 173178.
  • Coble, P. G., C. E. Del Castillo, and B. Avril (1998), Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon, Deep Sea Res., Part II, 45, 21952223.
  • Conte, P., and A. Piccolo (1999), Conformational arrangement of dissolved humic substances: Influence of solution composition on association of humic molecules, Environ. Sci. Technol., 33, 16821690.
  • De Haan, H., R. I. Jones, and K. Salonen (1987), Does ionic-strength affect the configuration of aquatic humic substances, as indicated by gel-filtration, Freshwater Biol., 17, 453459.
  • Del Castillo, C. E., P. G. Coble, J. M. Morell, J. M. Lopez, and J. E. Corredor (1999), Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy, Mar. Chem., 66, 3551.
  • Del Castillo, C. E., P. G. Coble, R. N. Conmy, F. E. Müller-Karger, L. Vanderbloemen, and G. A. Vargo (2001), Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: Documenting the intrusion of the Mississippi River plume in the West Florida Shelf, Limnol. Oceanogr., 46, 18361843.
  • Del Vecchio, R., and N. V. Blough (2002), Photobleaching of chromophoric dissolved organic matter in natural waters: Kinetics and modeling, Mar. Chem., 78, 231253.
  • De Souza Sierra, M. M., O. F. X. Donard, M. Lamotte, C. Belin, and M. Ewald (1994), Fluorescence spectroscopy of coastal and marine waters, Mar. Chem., 47, 127144.
  • De Souza Sierra, M. M., O. F. X. Donard, and M. Lamotte (1997), Spectral identification and behaviour of dissolved organic fluorescent material during estuarine mixing processes, Mar. Chem., 58, 5158.
  • Deuser, W. G. (1988), Whither organic carbon? Nature, 332, 396397.
  • Duval, J. F., K. J. Wilkinson, H. P. Van Leeuwen, and J. Buffle (2005), Humic substances are soft and permeable: Evidence from their electrophoretic mobilities, Environ. Sci. Technol., 39(17), 64356445.
  • Ephraim, J. H., C. Pettersson, M. Norden, and B. Allard (1995), Potentiometric titrations of humic substances: Do ionic strength effects depend on the molecular weight? Environ. Sci. Technol., 29(3), 622628.
  • Fox, L. E. (1983), The removal of dissolved humic acid during estuarine mixing, Estuarine Coastal Shelf Sci., 16, 431440.
  • Guo, L. D., and P. H. Santschi (1996), A critical evaluation of the cross-flow ultrafiltration technique for sampling colloidal organic carbon in seawater, Mar. Chem., 55, 113127.
  • Hall, G. J., K. E. Clow, and J. E. Kenny (2005), Estuarial fingerprinting through multidimensional fluorescence and multivariate analysis, Environ. Sci. Technol., 39, 75607567.
  • Hedges, J. I., R. G. Keil, and R. Benner (1997), What happens to terrestrial organic matter in the ocean? Org. Geochem., 27, 195212.
  • Hedges, J. I., et al. (2000), The molecularly uncharacterized component of nonliving organic matter in natural environments, Org. Geochem., 31, 945958.
  • Ittekkot, V. (2003), A new story from the ol' man river, Science, 301, 5658.
  • Ittekkot, V., and B. Haake (1990), The terrestrial link in the removal of organic carbon in the sea, in Facets of Modern Biogeochemistry, edited by V. Ittekkot, pp. 318325, Springer, New York.
  • Keith, S. C., and C. Arnosti (2001), Extracellular enzyme activity in a river-bay-shelf transect: Variations in polysaccharide hydrolysis rates with substrate and size class, Aquat. Microbial Ecol., 24(3), 243253.
  • Kieber, D. J., J. McDaniel, and K. Mopper (1989), Photochemical source of biological substrates in sea water: Implications for carbon cycling, Nature, 341, 637639.
  • Komada, T., O. M. E. Schofield, and C. E. Reimers (2002), Fluorescence characteristics of organic matter released from coastal sediments during resuspension, Mar. Chem., 79, 8197.
  • Kowalczuk, P., W. J. Cooper, R. F. Whitehead, M. J. Durako, and W. Sheldon (2003), Characterization of CDOM in an organic-rich river and surrounding coastal ocean in the South Atlantic Bight, Aquat. Sci., 65, 384401.
  • Langenheder, S., L. J. Tranvik, V. Kisand, J. Wikner, and V. Kisand (2003), Salinity as a structuring factor for the composition and performance of bacterioplankton degrading riverine DOC, FEMS Microbiol. Ecol., 45, 189202.
  • Lores, E. M., and J. R. Pennock (1998), The effect of salinity on binding of Cd, Cr, Cu and Zn to dissolved organic matter, Chemosphere, 37, 861874.
  • Maie, N., N. M. Scully, O. Pisani, and R. Jaffé (2007), Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems, Water Res., 41, 563570.
  • Matthews, B. J. H., A. C. Jones, N. K. Theodorou, and A. W. Tudhope (1996), Excitation-emission-matrix fluorescence spectroscopy applied to humic acid bands in coral reefs, Mar. Chem., 55, 317332.
  • McKnight, D. M., E. W. Boyer, P. K. Westerhoff, P. T. Doran, T. Kulbe, and D. T. Andersen (2001), Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity, Limnol. Oceanogr., 46, 3848.
  • Mobed, J. J., S. L. Hemmingsen, J. L. Autry, and L. B. McGown (1996), Fluorescence characterization of IHSS humic substances: Total luminescence spectra with absorbance correction, Environ. Sci. Technol., 30(10), 30613065.
  • Mopper, K., and C. A. Schultz (1993), Fluorescence as a possible tool for studying the nature and water column distribution of DOC components, Mar. Chem., 41, 229238.
  • Mopper, K., Z. M. Feng, S. B. Bentjen, and R. F. Chen (1996), Effects of cross-flow filtration on the absorption and fluorescence properties of seawater, Mar. Chem., 55, 5374.
  • Moran, M. A., W. M. Sheldon, and R. G. Zepp (2000), Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter, Limnol. Oceanogr., 45, 12541264.
  • Murphy, K. R., C. A. Stedmon, T. D. Waite, and G. M. Ruiz (2008), Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy, Mar. Chem., 108, 4058.
  • Myneni, S. C. B., J. T. Brown, G. A. Martinez, and W. Meyer-Ilse (1999), Imaging of humic substance macromolecular structures in water and soils, Science, 286, 13351337.
  • Osburn, C. L., and D. P. Morris (2003), Photochemistry of chromophoric dissolved organic matter in natural waters, in UV Effects in Aquatic Organisms and Ecosystems, edited by E. W. Helbling, and A. Zagarese, pp. 187209, R. Soc. of Chem., Cambridge, U. K.,
  • Osburn, C. L., D. W. O'Sullivan, and T. J. Boyd (2009), Increases in the longwave photobleaching of chromophoric dissolved organic matter in coastal waters, Limnol. Oceanogr., 54, 145159.
  • Parlanti, E., K. Wörz, L. Geoffroy, and M. Lamotte (2000), Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs, Org. Geochem., 31, 17651781.
  • Raymond, P. A., and J. E. Bauer (2000), Bacterial consumption of DOC during transport through a temperate estuary, Aquat. Microb. Ecol., 22, 112.
  • Raymond, P. A., and J. E. Bauer (2001), Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: A review and synthesis, Org. Geochem., 32, 469485.
  • Rochelle-Newall, E. J., and T. R. Fisher (2002), Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: An investigation into the role of phytoplankton, Mar. Chem., 77, 721.
  • Senesi, N., T. M. Miano, M. R. Provenzano, and G. Brunetti (1991), Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy, Soil Sci., 152, 259271.
  • Sholkovitz, E. R. (1976), Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater, Geochim. Cosmochim. Acta, 40, 831845.
  • Sillen, A., S. Verheyden, L. Delfosse, T. Braem, Y. Engelborghs, J. Robben, and G. Volckaert (2003), Mechanism of fluorescence and conformational changes of the sarcoplasmic calcium binding protein of the sand worm Nereis diversicolor upon Ca2+ or Mg2+ binding, Biophys. J., 85(3), 18821893.
  • Smith, L. W. (1987), A review of circulation and mixing studies of San Francisco Bay, California, pp. 138, U.S. Geol. Surv., Sacramento, Calif.,
  • Smith, S. V., and F. T. Mackenzie (1987), The ocean as a net heterotrophic system: Implications from the carbon biogeochemical cycle, Global Biogeochem. Cycles, 1, 187198.
  • Stedmon, C. A., S. Markager, and R. Bro (2003), Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy, Mar. Chem., 82, 239254.
  • Thurman, E. M. (1985), Organic Geochemistry of Natural Waters, Martinus Nijhoff, Dordrecht, Netherlands.
  • Vodacek, A., N. V. Blough, M. D. DeGrandpre, E. T. Peltzer, and R. K. Nelson (1997), Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: Terrestrial inputs and photooxidation, Limnol. Oceanogr., 42, 674686.
  • Willey, J. D. (1984), The effect of seawater magnesium on natural fluorescence during estuarine mixing, and implications for tracer applications, Mar. Chem., 15, 1945.
  • Yamashita, Y., and E. Tanoue (2004), In situ production of chromophoric dissolved organic matter in coastal environments, Geophys. Res. Lett., 31, L14302, doi:10.1029/2004GL019734.
  • Yamashita, Y., R. Jaffé, N. Maie, and E. Tanoue (2008), Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC), Limnol. Oceanogr., 53(5), 19001908.
  • Yan, Y., H. Li, and M. L. Myrick (2000), Fluorescence fingerprint of waters: Excitation-emission matrix spectroscopy as a tracking tool, Appl. Spectrosc., 54, 15391542.
  • Zepp, R. G. (2002), Solar ultraviolet radiation and aquatic carbon, nitrogen, sulfur and metals cycles, in UV Effects in Aquatic Organisms and Ecosystems, edited by E. W. Helbling, and H. E. Zagarese, pp. 137183, R. Soc. of Chem., Cambridge, U. K.,