SEARCH

SEARCH BY CITATION

References

  • Arctic Climate Impact Assessment (ACIA) (2004), Impacts of a Warming Arctic, 146 pp., Cambridge Univ. Press, Cambridge, U. K.,
  • Bartlett, D. S., G. J. Whiting, and J. M. Hartman (1989), Use of vegetation indexes to estimate solar radiation and net carbon exchange of a grass canopy, Remote Sens. Environ., 30, 115128.
  • Boelman, N. T., M. Stieglitz, H. M. Rueth, M. Sommerkorn, K. L. Griffin, G. R. Shaver, and J. A. Gamon (2003), Response of NDVI, biomass, and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra, Oecologia, 135(3), 414421.
  • Chapin, F. S.III, and G. R. Shaver (1985), Arctic, in Physiological Ecology of North American Plant Communities, edited by B. F. Chabot, and H. A. Mooney, pp. 1640, Chapman and Hall, New York.
  • Fahnestock, J. T., M. H. Jones, P. D. Brooks, D. A. Walker, and J. M. Welker (1998), Winter and early spring CO2 efflux from tundra communities of northern Alaska, J. Geophys. Res., 103(D22), 29,02329,027.
  • Goetz, S. J., A. J. Bunn, G. J. Fiske, and R. A. Houghton (2005), Satellite-observed photosynthetic trends across North America associated with climate and fire disturbance, Proc. Natl. Acad. Sci. U. S. A., 102(38), 13,52113,525.
  • Goulden, M., et al. (1996), Measurements of carbon sequestration by long-term eddy covariance: Methods and a critical evaluation of accuracy, Global Change Biol., 2, 169182.
  • Houston, S. (2004), Separating arctic tundra vegetation types based on photosynthetic light-use efficiency and optical properties, M.S. thesis, Calif. State Univ., Los Angeles.
  • Huemmrich, K. F., et al. (2010), Remote sensing of tundra gross ecosystem productivity and light use efficiency under varying temperature and moisture conditions, Remote Sens. Environ., 114(3), 481489.
  • Kinoshita, G. Y. (2005), The effects of three seasons of elevated temperature and water table manipulation on ecosystem carbon fluxes, soils, biomass, and plant nutrient status of an arctic coastal tundra ecosystem near Barrow, Alaska, M.S. thesis, San Diego State Univ., San Diego, Calif.,
  • Kwon, H.-J., W. C. Oechel, R. C. Zulueta, and S. J. Hastings (2006), Effects of climate variability on carbon sequestration among adjacent wet sedge tundra and moist tussock tundra ecosystems, J. Geophys. Res., 111, G03014, doi:10.1029/2005JG000036.
  • Lafleur, P. M., and E. R. Humphreys (2007), Spring warming and carbon dioxide exchange over low Arctic tundra in central Canada, Global Change Biol., 14, 740756.
  • Lafleur, P. M., J. T. Griffis, and W. R. Rouse (2001), Interannual variability in net ecosystem CO2 exchange at the arctic tree line, Arct. Antarct. Alp. Res., 33, 149157.
  • Mack, M. C., E. A. G. Schuur, M. S. Bret-Harte, G. R. Shaver, and F. S. Chapin (2004), Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization, Nature, 431, 440443.
  • McMichael, C. E., A. S. Hope, D. A. Stow, J. B. Fleming, G. Vourlitis, and W. Oechel (1999), Estimating CO2 exchange at two sites in Arctic tundra ecosystems during the growing season using a spectral vegetation index, Int. J. Remote Sens., 20(4), 683698.
  • Moffat, A. M., et al. (2007), Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes, Agric. For. Meteorol., 147, 209232.
  • Monteith, J. L. (1977), Climate and efficiency of crop production in Britain, Philos. Trans. R. Soc. London B, 281, 277294.
  • Mullier, S. V., A. E. Racoviteanu, and D. A. Walker (1999), Landsat MSS derived land-cover map of northern Alaska: Extrapolation methods and a comparison with photo-interpreted and AVHRR-derived maps, Int. J. Remote Sens., 20, 29212946.
  • Myneni, R. B., C. D. Keeling, C. J. Tucker, G. Asrar, and R. R. Nemani (1997), Increased plant growth in the northern high latitudes from 1981 to 1991, Nature, 386(6626), 698702.
  • New, M., M. Todd, M. Hulme, and P. Jones (2001), Precipitation measurements and trends in the twentieth century, Int. J. Climatol., 21, 18991922.
  • Oberbauer, S. F., et al. (2007), Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients, Ecol. Monogr., 77, 221238.
  • Oechel, W. C., S. J. Hastings, G. L. Vourlitis, M. Jenkins, G. Riechers, and N. Grulke (1993), Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source, Nature, 361, 520523.
  • Oechel, W. C., G. L. Vourlitis, S. J. Hastings, R. C. Zulueta, L. Hinzman, and D. Kane (2000), Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming, Nature, 406, 978981.
  • Piao, S., et al. (2008), Net carbon dioxide losses of northern ecosystems in response to autumn warming, Nature, 451(7174), 4952.
  • Russell, G., P. G. Jarvis, and J. L. Monteith (1989), Absorption of radiation by canopies and stand growth, in Plant Canopies: Their Growth, Form and Function, edited by G. Russell, B. Marshall, and P. G. Jarvis, pp. 2140, Cambridge Univ. Press, Cambridge, U. K.,
  • Schuur, E. A. G., et al. (2008), Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle, BioScience, 58(8), 701714.
  • Serreze, M. C., et al. (2000), Observational evidence of recent change in the northern high latitude environment, Clim. Change, 46, 159207.
  • Shaver, G. R., L. E. Street, E. B. Rastetter, M. T. van Wijk, and M. Williams (2007), Functional convergence in regulation of net CO2 flux in heterogeneous tundra landscapes in Alaska and Sweden, J. Ecol., 95, 802817.
  • Smith, L. C., Y. Sheng, G. M. MacDonald, and L. D. Hinzman (2005), Disappearing arctic lakes, Science, 308(5727), 1429, doi:10.1126/science.1108142.
  • Smith, T. M., and H. H. Shugart (1993), The transient response of terrestrial carbon storage to a perturbed climate, Nature, 361, 523526.
  • Stow, D. A., et al. (2004), Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems, Remote Sens. Environ., 89, 281308.
  • Street, L. E., G. R. Shaver, M. Williams, and M. T. van Wijk (2007), What is the relationship between changes in leaf area and changes in photosynthetic CO2 flux in arctic ecosystems? J. Ecol., 95, 139150.
  • Sturm, M., C. Racine, and K. Tape (2001), Increasing shrub abundance in the arctic, Nature, 411, 12511256.
  • van Wijk, M. T., et al. (2004), Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: Generalizations and differences in ecosystem and plant type responses to global change, Global Change Biol., 10(1), 105123.
  • Vourlitis, G. L., W. C. Oechel, S. J. Hastings, and M. A. Jenkins (1993), A system for measuring in situ CO2 and CH4 flux in unmanaged ecosystems—An arctic example, Funct. Ecol., 7(3), 369379.
  • Vourlitis, G. L., W. C. Oechel, A. Hope, D. Stow, B. Boynton, J. Verfaillie, R. Zulueta, and S. H. Hastings (2000a), Physiological models for scaling plot-measurements of CO2 flux across an arctic tundra landscape, Ecol. Appl., 10, 6072.
  • Vourlitis, G. L., Y. Harazono, W. C. Oechel, M. Yoshimoto, and M. Mano (2000b), Spatial and temporal variations in landscape-scale net CO2 exchange, respiration, and gross primary production in arctic tundra ecosystems, Funct. Ecol., 14, 203214.
  • Welker, J. M., J. T. Fahnestock, and M. H. Jones (2000), Annual CO2 flux in dry and moist arctic tundra: Fields responses to increases in summer temperatures and winter snow depth, Clim. Change, 44, 139150.
  • Whiting, G. J., J. P. Chanton, D. S. Bartlett, and J. D. Happell (1991), Relationships between CH4 emission, biomass, and CO2 exchange in a subtropical grassland, J. Geophys. Res., 96, 30673071.