SEARCH

SEARCH BY CITATION

References

  • Boon, P. N., J. P. Lie, M. H. Er, and A. Fen (2009), A practical simple geometry and gain/phase calibration technique for antenna array processing, IEEE Trans. Antennas Propag., 57(7), 19631972.
  • Bronez, T. P. (1988), Sector interpolation of non-uniform arrays for efficient high resolution bearing estimation, paper presented at International Conference on Acoustics, Speech, and Signal Processing (ICASSP-88), Inst. of Electr. and Electron. Eng., New York.
  • Fernandez, J. E., and M. F. Catedra-Perez (1997), The matrix pencil method for two-dimensional direction of arrival estimation employing an L-shaped array, IEEE Trans. Antennas Propag., 45(11), 16931694.
  • Filik, T., and T. E. Tuncer (2009a), Closed-form automatically paired 2-D direction-of-arrival estimation with arbitrary arrays, paper presented at European Signal Processing Conference (EUSIPCO-2009), Eur. Assoc. for Signal Process., Glasgow, Scotland, 24 Aug.
  • Filik, T., and T. E. Tuncer (2009b), Uniform and nonuniform V-shaped planar arrays for 2-D direction-of-arrival estimation, Radio Sci., 44, RS5006, doi:10.1029/2008RS003949.
  • Friedlander, B. (1993), The root-music algorithm for direction finding with interpolated arrays, IEEE Trans. Signal Process., 53(12), 44644471.
  • Friedlander, B., and J. Weiss (1991), Direction finding in the presence of mutual coupling, IEEE Trans. Antennas Propag., 39(3), 273284.
  • Goossens, R., and H. Rogier (2007), A hybrid UCA-RARE/Root-MUSIC approach for 2-D direction of arrival estimation in uniform circular arrays in the presence of mutual coupling, IEEE Trans. Antennas Propag., 55(3), 841849.
  • Gu, J., P. Wei, and H. Tai (2008), 2-D direction-of-arrival estimation of coherent signals using cross-correlation matrix, Signal Process., 88, 7585.
  • Hua, Y., T. K. Sarkar, and D. D. Weiner (1991), An L-shaped array for estimating 2-D directions of arrival, IEEE Trans. Antennas Propag., 39(2), 143146.
  • Hyberg, P., M. Jansson, and B. Ottersten (2005), Array interpolation and DOA MSE reduction, IEEE Trans. Signal Process., 53(12), 44644471.
  • Kedia, V. S., and B. Chandna (1997), A new algorithm for 2-D DOA estimation, Signal Process., 60, 325332.
  • Kikuchi, S., H. Tsuji, and A. Sano (2006), Pair-matching method for estimating 2-D angle of arrival with a cross-correlation matrix, IEEE Antennas Wireless Propag. Lett., 5, 3540.
  • Krim, H., and M. Viberg (1996), Two decades of array signal processing research: The parametric approach, IEEE Signal Process. Mag., 13(4), 6794.
  • Lin, M., and L. Yang (2006), Blind calibration and DOA estimation with uniform circular arrays in the presence of mutual coupling, IEEE Antennas Wireless Propag. Lett., 5, 315318.
  • Liu, Q. (2001), Two-dimensional virtual ESPRIT algorithm, IEEE Electron. Lett., 37(16), 10521053.
  • Liu, T., and J. M. Mendel (1998), Azimuth and elevation direction finding using arbitrary array geometries, IEEE Trans. Signal Process., 46(7), 20612065.
  • Mathews, C. P., and M. D. Zoltowski (1994), Eigenstructure techniques for 2-D angle estimation with uniform circular arrays, IEEE Trans. Signal Process., 42(9), 23952407.
  • Roy, R., and T. Kailath (1989), ESPRIT-estimation of signal parameters via rotational invariance techniques, IEEE Trans. Acoustic Speech Signal Process., 37(7), 984995.
  • See, C. S., and B. Poh (1999), Parametric sensor array calibration using measured steering vectors of uncertain localitions, IEEE Trans. Signal Process., 47(4), 11331137.
  • Stoica, P., and A. Nehorai (1991), Performance study of conditional and unconditional direction-of-arrival estimation, IEEE Trans. Signal Process., 39(2), 446453.
  • Swingler, D. N. (1994), Narrowband line-array beamforming: Practically achievable resolution limit of unbiased estimators, IEEE J. Oceanic Eng., 19(2), 225226.
  • Tayem, N., and H. M. Kwon (2005), L-shape 2-dimensional arrival angle estimation with propagator method, IEEE Trans. Antennas Propag., 53(5), 16221630.
  • Tuncer, T. E., and B. Friedlander (2009), Classical and Modern Direction-of-Arrival Estimation, 456 pp., Academic, San Diego, Calif.
  • Tuncer, T. E., T. K. Yasar, and B. Friedlander (2007), Direction of arrival estimation for nonuniform linear arrays by using array interpolation, Radio Sci., 42, RS4002, doi:10.1029/2007RS003641.
  • Veen, A., P. B. Ober, and E. F. Deprettere (1992), Azimuth and elevation computation in high resolution DOA estimation, IEEE Trans. Signal Process., 40(7), 18281832.
  • Weiss, A. J., and B. Friedlander (1996), DOA and steering vector estimation using a partially calibrated array, IEEE Trans. Aerosp. Electron. Syst., 32(3), 10471057.
  • Xia, T., Y. Zheng, Q. Wan, and X. Wang (2007), Decoupled estimation of 2-D angles of arrival using two parallel uniform linear arrays, IEEE Trans. Antennas Propag., 55(9), 26272632.
  • Yasar, T. K., and T. E. Tuncer (2008), Wideband DOA estimation for nonuniform linear arrays with Wiener array interpolation, paper presented at the Fifth Sensor Array and Multichannel Signal Processing Workshop (SAM-2008), Inst. of Electr. and Electron. Eng., Darmstadt, Germany, 21 July .
  • Ye, Z., and C. Liu (2008a), On the resiliency of MUSIC direction finding against antenna sensor coupling, IEEE Trans. Antennas Propag., 56(2), 371380.
  • Ye, Z., and C. Liu (2008b), 2-D DOA estimation in the presence of mutual coupling, IEEE Trans. Antennas Propag., 56(10), 31503158.
  • Zoltowski, M. D., M. Haardt, and C. P. Mathews (1996), Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT, IEEE Trans. Signal Process., 44(3), 316328.