SEARCH

SEARCH BY CITATION

References

  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith (1998), Crop Evapotranspiration: Guidelines for Computing Crop Requirements, FAO Irrigation and Drainage Paper 56, Food and Agricultural Organization of the U.N., Rome.
  • Alton, P., R. Fisher, S. Los, and M. William (2009), Simulation of global evapotranspiration using semiempirical and mechanistic schemes of plant hydrology, Global Biogeochem. Cycles, 23, GB4023, doi:10.1029/2009GB003540.
  • Anderson, M. C., J. M. Norman, W. P. Kustas, R. Houborg, P. J. Starks, and N. Agam (2008), A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales, Remote Sens. Environ., 112, 42274241.
  • Aubinet, M., B. Chermanne, M. Vandenhaute, B. Longdoz, M. Yernaux, and E. Laitat (2001), Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes, Agr. Forest Meteorol., 108, 293315.
  • Baker, J. M., T. E. Ochsner, R. T. Venterea, and T. J. Griffis (2007), Tillage and soil carbon sequestration – What do we really know? Agr. Ecosyst. Environ., 118, 15.
  • Baldocchi, D. (2008), Breathing of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems, Aust. J. Bot., 56, 126.
  • Barcza, Z., A. Kern, L. Haszpra, and N. Kljun (2009), Spatial representativeness of tall tower eddy covariance measurements using remote sensing and footprint analysis, Agr. Forest Meteorol., 149, 795807.
  • Barr, A. G., K. Morgenstern, T. A. Black, J. H. McCaughey, and Z. Nesic (2006), Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux, Agr. Forest Meteorol., 140, 322337.
  • Bastiaanssen, W. G. M., M. Menenti, R. A. Feddes, and A. A. M. Holtslag (1998), A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation, J. Hydrol., 212-213, 198212.
  • Berbigier, P., and D. Lousteau (2000), Bordeaux, France, The Euroflux dataset, 2000, in Carbon, Water and Energy Exchanges of European Forests, edited by R. Valentini, p. 300, Springer-Verlag, Heidelberg.
  • Beringer, J., L. B. Hutley, N. J. Tapper, and L. A. Cernusak (2007), Savanna fires and their impact on net ecosystem productivity in North Australia, Global Change Biol., 13, 9901004.
  • Bonal, D., et al. (2008), Impact of severe dry season on net ecosystem exchange in the Neotropicl rainforest of French Guiana, Global Change Biol., 14, 19171933.
  • Bouchet, R. J. (1963), Evapotranspiration réelle evapotranspiration potentielle, signification climatique, Proc. Berkeley Calif. Symp. IAHS Publ., 62, 134142.
  • Bruijnzeel, L. A. (1990), Hydrology of Moist Tropical Forests and Effects of Conversion: A State of Knowledge Review, International Hydrological Programme, UNESCO, Paris, France.
  • Ceulemans, R. (2000), Braschaat, Belgium, The Euroflux dataset 2000, in Carbon, Water and Energy Exchanges of European Forests, edited by R. Valentini, p. 300, Springer-Verlag, Heidelberg.
  • Choudhury, B. J., and N. E. DiGirolamo (1998), A biophysical process-based estimate of global land surface evaporation using satellite and ancillary data: I. Model description and comparison with observations, J. Hydrol., 205, 164185.
  • Clark, K. L., N. Skowronski, and J. Hom (2010), Invasive insects impact forest carbon dynamics, Global Change Biol., 16, 88101.
  • Clement, R., J. B. Moncrieff, and P. G. Jarvis (2003), Net carbon productivity of Sitka Spruce forest in Scotland, Scottish Forestry, 57, 510.
  • Cleugh, H. A., R. Leuning, Q. Mu, and S. W. Running (2007), Regional evaporation estimates from flux tower and MODIS satellite data, Remote Sens. Environ., 106, 285304.
  • Cook, B. D., et al. (2004), Carbon exchange and venting anomalies in an upland deciduous forest in northern Wisconsin, USA, Agr. Forest Meteorol., 126, 271295.
  • Coulter, R. L., M. S. Pekour, D. R. Cook, G. E. Klazura, T. J. Martin, and J. D. Lucas (2006), Surface energy and carbon dioxide fluxes above different vegetation types within ABLE, Agr. Forest Meteorol., 136, 147158.
  • Dai, A., T. T. Qian, K. E. Trenberth, and J. D. Milliman (2009), Changes in continental freshwater discharge from 1948 to 2004, J. Climate, 22, 27732792.
  • DeForest, J. L., G. Sun, A. Noormets, J. Chen, S. McNulty, M. Gavazzi, D. M. Amatya, and R. W. Skaggs (2006), Carbon and water fluxes in a drained coastal clearcut and a pine plantation in eastern North Carolina, in Hydrology and Management of Forested Wetlands: Proceedings of the International Conference, edited by T. M. William, and J. Nettles, pp. 587597, Am. Soc. Agr. Biol. Eng., St. Joseph, MI.
  • DeFries, R. S., M. Hansen, J. R. G. Townshend, A. C. Janetos, and T. R. Loveland (2000a), 1 kilometer tree cover continuous fields, 1.0, Department of Geography, University of Maryland, College Park, Maryland, 1992–1993.
  • DeFries, R. S., M. C. Hansen, J. R. G. Townshend, A. C. Janetos, and T. R. Loveland (2000b), A new global 1 km dataset of percentage tree cover derived from remote sensing, Global Change Biol., 6, 247254.
  • Dijkstra, P., et al. (2002), Elevated atmospheric CO2 stimulates aboveground biomass in a fire-regenerated scrub-oak ecosystem, Global Change Biol., 8(1), 90103.
  • Dunn, A. L., and S. C. Wofsy (2006), Boreal Forest CO2 Flux, Soil Temperature, and Meteorological Data, Department of Earth & Planetary Sciences, Cambridge, MA.
  • Epstein, H. E., M. P. Calef, M. D. Walker, F. S. Chapin, and A. M. Starfield (2004), Detecting changes in Arctic tundra plant communities in response to warming over decadal time scales, Global Change Biol., 10, 13251334.
  • Falk, M., S. Wharton, M. Schroeder, S. Ustin, and K. T. Paw U (2008), Flux partitioning in an old-growth forest: Seasonal and interannual dynamics, Tree Physiol., 28, 509520.
  • Ferguson, C. R., J. Sheffield, E. F. Wood, and H. Gao (2010), Quantifying uncertainty in a remote sensing-based estimate of evapotranspiration over the continental United States, Int. J. Remote Sens., 31(14), 38213865.
  • Fischer, M. L., D. P. Billesbach, J. A. Berry, W. J. Riley, and M. S. Torn (2007), Spatiotemporal variations in growing season exchanges of CO2, H2O, and sensible heat in agricultural fields of the Southern Great Plains, Lawrence Berkeley Lab., Berkeley, CA.
  • Fisher, J. B., K. P. Tu, and D. D. Baldocchi (2008), Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites, Remote Sens. Environ., 112, 901919.
  • Frank, D. A., and R. S. Inouye (1994), Temporal variation in actual evapotranspiration of terrestrial ecosystems – Patterns and ecological implications, J. Biogeogr., 21, 401411.
  • Friedl, M. A., et al. (2010), MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets, Remote Sens. Environ., 114, 168182.
  • Giambelluca, T. W., F. G. Scholz, S. J. Bucci, F. C. Meinzer, G. Goldstein, W. A. Hoffmann, A. C. Franco, and M. P. Buchert (2009), Evapotranspiration and energy balance of Brazilian savannas with contrasting tree density, Agr. Forest Meteorol., 149, 13651376.
  • Gillies, R. R., T. N. Carlson, J. Cui, W. P. Kustas, and K. S. Humes (1997), A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the normalized difference vegetation index (NDVI) and surface radiant temperature, Int. J. Remote Sens., 18, 31453166.
  • Gilmanov, T. G., L. L. Tieszen, B. K. Wylie, L. B. Flanagan, A. B. Frank, M. R. Haferkamp, T. P. Meyers, and J. A. Morgan (2005), Integration of CO2 flux and remotely-sensed data for primary production and ecosystem respiration analyses in the Northern Great Plains: Potential for quantitative spatial extrapolation, Global Ecol. Biogeogr., 14, 271292.
  • Glenn, E. P., A. R. Huete, P. L. Nagler, K. K. Hirschboeck, and P. Brown (2007), Integrating remote sensing and ground methods to estimate evapotranspiration, Crit. Rev. Plant Sci., 26, 139168.
  • Goldstein, A. H., et al. (2000), Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada (CA), Agr. Forest Meteorol., 101, 113129.
  • Griffis, T. J., J. Zhang, J. M. Baker, N. Kljun, and K. Billmark (2007), Determining carbon isotope signatures from micrometeorological measurements: Implications for studying biosphere-atmosphere exchange process, Bound.-Layer Meteor., 123, 295316.
  • Gu, L. H., et al. (2007), Influences of biomass heat and biochemical energy storages on the land surface fluxes and diurnal temperature range, J. Geophys. Res., 112, D02107, doi:10.1029/2006JD007425.
  • Haario, H., M. Laine, A. Mira, and E. Saksman (2006), DRAM: Efficient adaptive MCMC, Stat. Comput., 16, 339354.
  • Hadley, J. L., P. S. Kuzeja, M. J. Daley, N. G. Phillips, T. Mulcahy, and S. Singh (2008), Water use and carbon exchange of red oak- and eastern hemlock-dominated forests in the northeastern USA: implications for ecosystem-level effects of hemlock woolly adelgid, Tree Physiology, 28(4), 615627.
  • Heinsch, F. A., J. L. Heilman, K. J. McInnes, D. R. Cobos, D. A. Zuberer, and D. L. Roelke (2004), Carbon dioxide exchange in a high marsh on the Texas Gulf Coast: Effects of freshwater availability, Agr. Forest Meteorol., 125, 159172.
  • Hirano, T., H. Segah, T. Harada, S. Limin, T. June, R. Hirata, and M. Osaki (2007), Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia, Global Change Biol., 13, 412425.
  • Hobbins, M. T., J. A. Ramirez, and T. C. Brown (2001), The complementary relationship of regional evapotranspiration: An enhanced advection-aridity model, Water Resour. Res., 37(5), 13891403, doi:10.1029/2000WR900359.
  • Hollinger, et al. (2004), Spatial and temporal variability in forest-atmosphere CO2 exchange, Global Change Biol., 10, 16891706.
  • Hong, Y., K. L. Hsu, S. Sorooshian, and X. G. Gao (2005), Improved representation of diurnal variability of rainfall retrieved from the Tropical Rainfall Measurement Mission Microwave Imager adjusted Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) system, J. Geophys. Res., 110, D06102, doi:10.1029/2004JD005301.
  • Hsu, K. L., X. G. Gao, S. Sorooshian, and H. V. Gupta (1997), Precipitation estimation from remotely sensed information using artificial neural networks, J. Appl. Meteorol., 36, 11761190.
  • Huffman, G. J., et al. (2007), The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales, J. Hydrometeorol., 8, 3855.
  • Huntington, T. G. (2006), Evidence for intensification of the global water cycle: Review and synthesis, J. Hydrol., 319, 8395.
  • Hutyra, L. R., et al. (2007), Seasonal controls on the exchange of carbon and water in an Amazonian rain forest, J. Geophys. Res., 112, G03008, doi:10.1029/2006JG000365.
  • Irvine, J., B. E. Law, and K. A. Hibbard (2007), Postfire carbon pools and fluxes in semiarid ponderosa pine in Central Oregon, Global Change Biol., 13, 17481760.
  • Jarvis, P. G., and K. G. McNaughton (1986), Stomatal control of transpiration: Scaling up from leaf to region, Adv. Ecol. Res., 15, 149.
  • Jenkins, J. P., A. D. Richardson, B. H. Braswell, S. V. Ollinger, D. Y. Hollinger, and M. L. Smith (2007), Refining light-use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements, Agr. Forest Meteorol., 143, 6479.
  • Jones, H. G. (1992), Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology, 2nd ed., 428 pp., Cambridge Univ. Press, Cambridge.
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. P. Xie (2004), CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution, J. Hydrometeorol., 5, 487503.
  • June, T., J. R. Evans, and G. D. Farquhar (2004), A simple new equation for the reversible temperature dependence of photosynthetic electron transport: A study on soybean leaf, Funct. Plant Biol., 31, 275283.
  • Kalma, J. D., and D. L. B. Jupp (1990), Estimating evaporation from pasture using infrared thermometry - evaluation of a one-layer resistance model, Agr. Forest Meteorol., 51, 223246.
  • Kalma, J. D., T. R. McVicar, and M. F. McCabe (2008), Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data, Surv. Geophys., 29, 421469.
  • Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77, 437471.
  • Kikuzawa, K. (1995), The basis for variation in leaf longevity of plants, Vegetatio, 121, 89100.
  • Kimball, J. S., M. Zhao, K. C. McDonald, and S. W. Running (2006), Satellite remote sensing of terrestrial net primary production for the pan-Arctic basin and Alaska, Mitig. Adapt. Strat. Glob. Change, 11, 782804, doi:10.1007/s11027-005-9014-5.
  • Kimball, J. S., et al. (2007), Recent climate-driven increases in vegetation productivity for the western Arctic: Evidence for an acceleration of the northern terrestrial carbon cycle, Earth Interact., 11, 130.
  • Kistler, R., et al. (2001), The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation, Bull. Am. Meteorol. Soc., 82, 247267.
  • Kobayashi, N., T. Hiyama, Y. Fukushima, M. L. Lopez, T. Hirano, and Y. Fujinuma (2007), Nighttime transpiration observed over a larch forest in Hokkaido, Japan, Water Resour. Res., 43, W03407, doi:10.1029/2006WR005556.
  • Kummerow, C., et al. (2001), The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors, J. Appl. Meteorol., 40, 18011820.
  • Kwon, H. J., W. C. Oechel, R. C. Zulueta, and S. J. Hastings (2006), Effects of climate variability on carbon sequestration among adjacent wet sedge tundra and moist tussock tundra ecosystems, J. Geophys. Res., 111, G03014, doi:10.1029/2005JG000036.
  • Larcher, W. (2003), Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups, 513 pp., Springer-Verlag, Berlin.
  • Leuning, R., H. A. Cleugh, S. J. Zegelin, and D. Hughes (2005), Carbon and water fluxes over a temperate Eucalyptus forest and a tropical wet/dry savanna in Australia: Measurements and comparison with MODIS remote sensing estimates, Agr. Forest Meteorol., 129, 151173.
  • Leuning, R., Y. Q. Zhang, A. Rajaud, H. Cleugh, and K. Tu (2008), A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation, Water Resour. Res., 44, W10419, doi:10.1029/2007WR006562.
  • Lhomme, J. P. (1997), A theoretical basis for the Priestley-Taylor coefficient, Bound.-Layer Meteor., 82, 179191.
  • Lindroth, A. (2000a), Flakaliden, Sweden, The Euroflux dataset 2000, in Carbon, Water and Energy Exchanges of European Forests, edited by R. Valentini, p. 300, Springer-Verlag, Heidelberg.
  • Lindroth, A. (2000b), Norunda, Sweden, The Euroflux dataset 2000, in Carbon, Water and Energy Exchanges of European Forests, edited by R. Valentini, p. 300, Springer-Verlag, Heidelberg.
  • Lipson, D. A., R. F. Wilson, and W. C. Oechel (2005), Effects of elevated atmospheric CO2 on soil microbial biomass, activity, and diversity in a chaparral ecosystem, Appl. Environ. Microbiol., 71, 85738580.
  • Litvak, M., S. Miller, S. C. Wofsy, and M. Goulden (2003), Effect of stand age on whole ecosystem CO2 exchange in the Canadian boreal forest, J. Geophys. Res., 108(D3), 8225, doi:10.1029/2001JD000854.
  • Livingstone, D. M., and M. T. Dokulil (2001), Eighty years of spatially coherent Austrian lake surface temperatures and their relationship to regional air temperature and the North Atlantic Oscillation, Limnol. Oceanogr., 46(5), 12201227.
  • L'vovich, M. I., and G. F. White (1990), Use and transformation of terrestrial water systems, in The Earth as Transformed by Human Action: Global and Regional Changes in the Biosphere Over the Past 300 Years, edited by B. L. Turner II et al., pp. 235252, Cambridge Univ. Press, New York.
  • Mazumder, A., W. D. Taylor, D. J. Mcqueen, and D. R. S. Lean (1990), Effects of fish and plankton on lake temperature and mixing depth, Science, 247, 312315.
  • Meehl, G. A., et al. (2007), Global climate projections, in Climate Change 2007: The Physical Science Basis, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge.
  • Meyers, T. P., and S. E. Hollinger (2004), An assessment of storage terms in the surface energy balance of maize and soybean, Agr. Forest Meteorol., 125, 105115.
  • Migliavacca, M., et al. (2009), Seasonal and interannual patterns of carbon and water fluxes of a poplar plantation under peculiar eco-climatic conditions, Agr. Forest Meteorol., 149, 14601476.
  • Monson, R. K., et al. (2005), Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest, Oecologia, 146(1), 130147.
  • Monteith, J. L. (1965), Evaporation and environment. The state and movement of water in living organisms, in Symposium of the Society of Experimental Biology, pp. 205234, Cambridge University Press, Cambridge.
  • Monteith, J., and M. Unsworth (2007), Principles of environmental physics, 418 pp., Academic Press, San Diego, CA.
  • Monteith, J. L. (1972), Solar radiation and productivity in tropical ecosystem, J. Appl. Ecol., 9, 747766.
  • Morrill, J. C., R. C. Bales, and M. H. Conklin (2005), Estimating stream temperature from air temperature: Implications for future water quality, J. Environ. Eng.-ASCE, 131, 139146.
  • Mu, Q., F. A. Heinsch, M. Zhao, and S. W. Running (2007), Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sens. Environ., 111, 519536.
  • Mu, Q., L. A. Jones, J. S. Kimball, K. C. McDonald, and S. W. Running (2009), Satellite assessment of land surface evapotranspiration for the pan-Arctic domain, Water Resour. Res., 45, W09420, doi:10.1029/2008WR007189.
  • Nemani, R. R., and S. W. Running (1989), Estimation of Regional Surface-Resistance to Evapotranspiration from Ndvi and Thermal-IR AVHRR Data, J. Appl. Meteorol., 28, 276284.
  • Nishida, K., R. R. Nemani, J. M. Glassy, and S. W. Running (2003), Development of an evapotranspiration index from aqua/MODIS for monitoring surface moisture status, IEEE Trans. Geosci. Remote Sens., 41(2), 493501.
  • Noormets, A., J. Chen, and T. R. Crow (2007), Age-dependent changes in ecosystem carbon fluxes in managed forests in northern Wisconsin, USA, Ecosystems, 10(2), 187203.
  • Norman, J. M., W. P. Kustas, and K. S. Humes (1995), A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature, Agr. Forest Meteorol., 77, 263293.
  • Oechel, W. C., G. L. Vourlities, S. J. Hastings, R. M. Zulueta, L. D. Hinzman, and D. L. Kane (2000), Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climatic warming, Nature, 406, 978981.
  • Pan, M., and E. F. Wood (2006), Data assimilation for estimating the terrestrial water budget using a constrained ensemble Kalman filter, J. Hydrometeorol., 7, 534547.
  • Pejam, M. R., M. A. Arain, and J. H. McCaughey (2006), Energy and water vapour exchanges over a mixedwood boreal forest in Ontario, Canada, Hydrol. Process., 20, 37093724.
  • Pilgrim, J. M., X. Fang, and H. G. Stefan (1998), Stream temperature correlations with air temperatures in Minnesota: Implications for climate warming, J. Am. Water Resour. As., 34, 11091121.
  • Pinker, R. T., and I. Laszlo (1992), Modeling surface solar irradiance for satellite applications on a global scale, J. Appl. Meteorol., 31, 194211.
  • Pinzon, J., M. E. Brown, and C. J. Tucker (2005), Satellite time series correction of orbital drift artifacts using empirical mode decomposition, in Hilbert-Huang Transform: Introduction and Applications, edited by N. E. Huang, and S. S. P. Shen, pp. 167186, World Scientific Publishing Co. Pte. Ltd., Singapore.
  • Powell, T. L., H. L. Gholz, K. L. Clark, G. Starr, W. P. Cropper, and T. A. Martin (2008), Carbon exchange of a mature, naturally regenerated pine forest in north Florida, Global Change Biol., 14, 25232538.
  • Priestley, C. H. B., and R. J. Taylor (1972), On the assessment of surface heat flux and evaporation using large-scale parameters, Mon. Weather Rev., 100, 8192.
  • Reich, P. B., I. J. Wright, and C. H. Lusk (2007), Predicting leaf physiology from simple plant and climate attributes: A global GLOPNET analysis, Ecol. Appl., 17, 19821988.
  • Rudolf, B., and U. Schneider (2005), Calculation of gridded precipitation data for the global land-surface using in-situ gauge observations, in Proceedings of the 2nd Workshop of the International Precipitation Working Group IPWG, Monterey, October 2004.
  • Ryu, Y., D. D. Baldocchi, S. Ma, and T. Hehn (2008), Interannual variability of evapotranspiration and energy exchange over an annual grassland in California, J. Geophys. Res., 113, D09104, doi:10.1029/2007JD009263.
  • Sagerfors, J., A. Lindroth, A. Grelle, L. Klemedtsson, P. Weslien, and M. Nilsson (2008), Annual CO2 exchange between a nutrient-poor, minerotrophic, boreal mire and the atmosphere, J. Geophys. Res., 113, G01001, doi:10.1029/2006JG000306.
  • Schmid, H. P., C. S. B. Grimmond, F. Cropley, B. Offerle, and H. B. Su (2000), Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States, Agr. Forest Meteorol., 103, 357374.
  • Scott, R. L. (2010), Using watershed water balance to evaluate the accuracy of eddy covariance evaporation measurements for three semiarid ecosystems, Agr. Forest Meteorol., 150, 219225.
  • Sheffield, J., C. R. Ferguson, T. J. Troy, E. F. Wood, and M. F. McCabe (2009), Closing the terrestrial water budget from satellite remote sensing, Geophys. Res. Lett., 36, L07403, doi:10.1029/2009GL037338.
  • Sorooshian, S., K. L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite (2000), Evaluation of PERSIANN system satellite-based estimates of tropical rainfall, Bull. Am. Meteorol. Soc., 81, 20352046.
  • Stewart, R. B., and W. R. Rouse (1977), Substantiation of Priestley and Taylor Parameter α=1.26 for potential evaporation in high latitudes, J. Appl. Meteorol., 16, 649650.
  • Su, Z. (2002), The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrol. Earth Syst. Sci., 6(1), 8599.
  • Su, Z., T. Schmugge, W. P. Kustas, and W. J. Massman (2001), An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere, J. Appl. Meteorol., 40, 19331951.
  • Suni, T., et al. (2003), Long-term measurements of surface fluxes above a Scots pine forest in Hyytiala, southern Finland, 1996–2001, Boreal Environ. Res., 8, 287301.
  • Suyker, A. E., and S. B. Verma (2008), Interannual water vapor and energy exchange in an irrigated maize-based agroecosystem, Agr. Forest Meteorol., 148, 417427.
  • Suyker, A. E., and S. B. Verma (2009), Evapotranspiration of irrigated and rainfed maize-soybean cropping systems, Agr. Forest Meteorol., 149, 443452.
  • Takagi, K., et al. (2009), Change in CO2 balance under a series of forestry activities in a cool-temperate mixed forest with dense undergrowth, Global Change Biol., 15, 12751288.
  • Tang, J. W., P. V. Bolstad, and J. G. Martin (2009), Soil carbon fluxes and stocks in a Great Lakes forest chronosequence, Global Change Biol., 15, 145155.
  • Tang, Q. H., S. Peterson, R. H. Cuenca, Y. Hagimoto, and D. P. Lettenmaier (2009), Satellite-based near-real-time estimation of irrigated crop water consumption, J. Geophys. Res., 114, D05114, doi:10.1029/2008JD010854.
  • Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber (2004), The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett., 31, L09607, doi:10.1029/2004GL019920.
  • Tenhunen, J., and E. D. Schulze (2000), Bayreuth, Germany, The Euroflux dataset 2000, in Carbon, Water and Energy Exchanges of European forests, edited by R. Valentini, p. 300, Springer-Verlag, Heidelberg.
  • Thorgeirsson, H., and J. Gudmudson (2000), Gunnarsholt, Iceland, The Euroflux dataset 2000, in Carbon, Water and Energy Exchanges of European Forests, edited by R. Valentini, p. 300, Springer-Verlag, Heidelberg.
  • Thornton, P. E. (1998), Regional ecosystem simulation: Combining surface- and satellite-based observations to study linkages between terrestrial energy and mass budgets, Ph.D. Dissertation thesis, 280 pp, The University of Montana, Missoula, MT.
  • Trenberth, K. E., et al. (2007), Observations: Surface and atmospheric climate change, in Climate Change 2007: The Physical Science Basis, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge.
  • Tucker, C. J., J. E. Pinzon, M. E. Brown, D. Slayback, E. W. Pak, R. Mahoney, E. Vermote, and N. Saleous (2005), An extended AVHRR 8 km NDVI data set compatible with MODIS and SPOT vegetation NDVI data, Int. J. Remote Sens., 26, 44854498.
  • Twine, T. E., et al. (2000), Correcting eddy-covariance flux underestimates over a grassland, Agr. Forest Meteorol., 103, 279300.
  • Urbanski, S., et al. (2007), Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest, J. Geophys. Res., 112, G02020, doi:10.1029/2006JG000293.
  • Valentini, R. (2000), Collelongo, Italy, The Euroflux dataset 2000, in Carbon, water and energy exchanges of European forests, edited by R. Valentini, p. 300, Springer-Verlag, Heidelberg.
  • Veenendaal, E. M., O. Kolle, and J. Lloyd (2004), Seasonal variation in energy fluxes and carbon dioxide exchange for a broad-leaved semi-arid savanna (Mopane woodland) in Southern Africa, Global Change Biol., 10, 318328.
  • Wever, L. A., L. B. Flanagan, and P. J. Carlson (2002), Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland, Agr. Forest Meteorol., 112(1), 3149.
  • Wilson, K., et al. (2002), Energy balance closure at FLUXNET sites, Agr. Forest Meteorol., 113(1–4), 223243.
  • Wilson, T. B., and T. P. Meyers (2007), Determining vegetation indices from solar and photosynthetically active radiation fluxes, Agr. Forest Meteorol., 144, 160179.
  • Wood, S. A., J. Beringer, L. B. Hutley, A. D. Mcguire, A. Van Dijk, and M. Kilinc (2008), Impacts of fire on forest age and runoff in mountain ash forests, Funct. Plant Biol., 35, 483492.
  • Wylie, B. K., E. A. Fosnight, T. G. Gilmanov, A. B. Frank, J. A. Morgan, M. R. Haferkamp, and T. P. Meyers (2007), Adaptive data-driven models for estimating carbon fluxes in the Northern Great Plains, Remote Sens. Environ., 106, 399413.
  • Yang, D., D. Kane, Z. Zhang, D. Legates, and B. Goodison (2005), Bias corrections of long-term (1973-2004) daily precipitation data over the northern regions, Geophys. Res. Lett., 32, L19501, doi:10.1029/2005GL024057.
  • Yuan, W. P., G. S. Zhou, Y. H. Wang, X. Han, and Y. S. Wang (2007), Simulating phenological characteristics of two dominant grass species in a semi-arid steppe ecosystem, Ecol. Res., 22, 784791.
  • Zhang, K., J. S. Kimball, M. Zhao, W. C. Oechel, J. Cassano, and S. W. Running (2007), Sensitivity of pan-Arctic terrestrial net primary productivity simulations to daily surface meteorology from NCEP-NCAR and ERA-40 reanalysis, J. Geophys. Res., 112, G01011, doi:10.1029/2006JG000249.
  • Zhang, K., J. S. Kimball, E. H. Hogg, M. Zhao, W. C. Oechel, J. J. Cassano, and S. W. Running (2008), Satellite-based model detection of recent climate-driven changes in northern high-latitude vegetation productivity, J. Geophys. Res., 113, G03033, doi:10.1029/2007JG000621.
  • Zhang, K., J. S. Kimball, Q. Mu, L. A. Jones, S. J. Goetz, and S. W. Running (2009), Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005, J. Hydrol., 379, 92110, doi:10.1016/j.jhydrol.2009.09.047.
  • Zhang, Y. Q., F. H. S. Chiew, L. Zhang, R. Leuning, and H. A. Cleugh (2008), Estimating evaporation and runoff using MODIS leaf area index and the Penman-Monteith equation, Water Resour. Res., 44, W10420, doi:10.1029/2007WR006563.
  • Zhao, L., S. X. Xu, Y. Li, Y. Tang, X. Zhao, S. Gu, M. Du, and G. Yu (2007), Relations between carbon dioxide fluxes and environmental factors of Kobresia humilis medows and Potentilla fruticosa meadows, Front. Biol. China, 2, 324332.
  • Zhao, M., S. W. Running, F. A. Heinsch, and R. R. Nemani (2008), Terrestrial primary production from MODIS, in Land Remote Sensing and Global Environmental Change: NASA's EOS and the Science of ASTER and MODIS, edited by C. Justice, and M. Abrams, pp. 423444, Springer, New York.