SEARCH

SEARCH BY CITATION

References

  • Akaike, H. (1974), New look at statistical-model identification, IEEE Trans. Autom. Control, 19, 716723.
  • Ang, A. H., and W. H. Tang (2007), Probability Concepts in Engineering: Emphasis on Applications in Civil and Environmental Engineering, 2nd ed., 406 pp., Wiley, New York.
  • Apipattanavis, S., B. Rajagopalan, and U. Lall (2010), Local polynomial-based flood frequency estimator for mixed population, J. Hydrol. Eng., 15, 680691.
  • Block, P., and B. Rajagopalan (2009), Statistical-dynamical approach for streamflow modeling at Malakal, Sudan, on the White Nile River, J. Hydrol. Eng., 14, 185196.
  • Buishand, T. A. (1989), Statistics of extremes in climatology, Stat. Neerl., 43, 130.
  • Cayan, D. R., K. T. Redmond, and L. G. Riddle (1999), ENSO and hydrologic extremes in the western United States, J. Clim., 12, 28812893.
  • Christensen, J. H., et al. (2007), Regional climate projections, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon, et al., Cambridge Univ. Press, Cambridge, UK.
  • Coles, S. (2001), An Introduction to Statistical Modeling of Extreme Values, Springer Ser. Stat., 208 pp., Springer, London.
  • Cooley, D. (2009), Extreme value analysis and the study of climate change, Clim. Change, 97, 7783.
  • Cromwell, J. E., J. B. Smith, and R. S. Raucher (2007), No doubt about climate change and its implications for water suppliers, J. Am. Water Works Assoc., 99, 112117.
  • Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns (2000), Climate extremes: Observations, modeling, and impacts, Science, 289, 20682074.
  • Efron, B., and R. Tibshirani (1993), An Introduction to the Bootstrap, Monogr. Stat. Appl. Prob., vol. 57, 436 pp., Chapman and Hall, New York.
  • El Adlouni, S., T. B. M. J. Ouarda, X. Zhang, R. Roy, and B. Bobee (2007), Generalized maximum likelihood estimators for the nonstationary generalized extreme value model, Water Resour. Res., 43, W03410, doi:10.1029/2005WR004545.
  • Gutowski, W. J., G. C. Hegerl, G. J. Holland, T. R. Knutson, L. O. Mearns, R. J. Stouffer, P. J. Webster, M. F. Wehner, and F. W. Zwiers (2008), Causes of observed changes in extremes and projections of future changes, in Weather and Climate Extremes in a Changing Climate. Regions of Focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands, edited by T. R. Karl, et al., U.S. Clim. Change Sci. Prog., Global Change Res., Washington, D. C.
  • Helsel, D. R., and R. M. Hirsch (1995), Statistical Methods in Water Resources, Stud. Environ. Sci., vol. 49, 529 pp., Elsevier, Amsterdam; New York.
  • Hosking, J. R. M. (1990), L moment analysis and estimation of distributions using linear-combinations of order statistics, J. R. Stat. Soc. Ser. B, 52, 105124.
  • Hosking, J. R. M., and J. R. Wallis (1988), The effect of intersite dependence on regional flood frequency-analysis, Water Resour. Res., 24(4), 588600, doi:10.1029/WR024i004p00588.
  • Jain, S., and U. Lall (2000), Magnitude and timing of annual maximum floods: Trends and large-scale climatic associations for the Blacksmith Fork River, Utah, Water Resour. Res., 36(12), 36413651, doi:10.1029/2000WR900183.
  • Jain, S., and U. Lall (2001), Floods in a changing climate: Does the past represent the future? Water Resour. Res., 37(12), 31933205, doi:10.1029/2001WR000495.
  • Katz, R. W. (2002), Techniques for estimating uncertainty in climate change scenarios and impact studies, Clim. Res., 20, 167185.
  • Katz, R. W., M. B. Parlange, and P. Naveau (2002), Statistics of extremes in hydrology, Adv. Water Resour., 25, 12871304.
  • Katz, R. W., G. S. Brush, and M. B. Parlange (2005), Statistics of extremes: Modeling ecological disturbances, Ecology, 86, 11241134.
  • Kharin, V. V., and F. W. Zwiers (2005), Estimating extremes in transient climate change simulations, J. Clim., 18, 11561173.
  • Kharin, V. V., F. W. Zwiers, X. Zhang, and G. C. Hegerl (2007), Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations, J. Clim., 20, 14191444.
  • Kunkel, K. E., R. A. Pielke, and S. A. Changnon (1999), Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: A review, Bull. Am. Meteorol. Soc., 80, 10771098.
  • Lettenmaier, D. P., J. R. Wallis, and E. F. Wood (1987), Effect of regional heterogeneity on flood frequency estimation, Water Resour. Res., 23(2), 313323, doi:10.1029/WR023i002p00313.
  • Loader, C. (1999), Local Regression and Likelihood, Stat. Comput., 290 pp., Springer, New York.
  • Maraun, D., H. W. Rust, and T. J. Osborn (2009), The annual cycle of heavy precipitation across the United Kingdom: A model based on extreme value statistics, Int. J. Climatol., 29, 17311744.
  • Martins, E. S., and J. R. Stedinger (2000), Generalized maximum likelihood generalized extreme-value quantile estimators for hydrologic data, Water Resour. Res., 36(3), 737744, doi:10.1029/1999WR900330.
  • Maurer, E. P. (2007), Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California, under two emissions scenarios, Clim. Change, 82, 309325.
  • Maurer, E. P., L. Brekke, T. Pruitt, and P. B. Duffy (2007), Fine-resolution climate projections enhance regional climate change impact studies', Eos Trans. AGU, 88(47), 504.
  • Meehl, G. A., et al. (2000), An introduction to trends in extreme weather and climate events: Observations, socioeconomic impacts, terrestrial ecological impacts, and model projections, Bull. Am. Meteorol. Soc., 81, 413416.
  • Meehl, G. A., et al. (2007), Global climate projections, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, UK.
  • Mestre, O., and S. Hallegatte (2009), Predictors of tropical cyclone numbers and extreme hurricane intensities over the North Atlantic using generalized additive and linear models, J. Clim., 22, 633648.
  • Miller, K., and D. Yates (2006), Climate Change and Water Resources: A Primer for Municipal Water Providers, Awwa Res. Found., Denver, Colo.
  • Milly, P. C. D., R. T. Wetherald, K. A. Dunne, and T. L. Delworth (2002), Increasing risk of great floods in a changing climate, Nature, 415, 514517.
  • Milly, P. C. D., J. Betancourt, M. Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P. Lettenmaier, and R. J. Stouffer (2008), Climate change: Stationarity is dead: Whither water management? Science, 319, 573574.
  • Morrison, J. E., and J. A. Smith (2002), Stochastic modeling of flood peaks using the generalized extreme value distribution, Water Resour. Res., 38(12), 1305, doi:10.1029/2001WR000502.
  • Regonda, S. K., B. Rajagopalan, M. Clark, and E. Zagona (2006), A multimodel ensemble forecast framework: Application to spring seasonal flows in the Gunnison River Basin, Water Resour. Res., 42, W09404, doi:10.1029/2005WR004653.
  • Renard, B., M. Lang, and P. Bois (2006), Statistical analysis of extreme events in a nonstationary context via a Bayesian framework: Case study with peak-over-threshold data, Stoch. Environ. Res. Risk Assess., 21, 97112.
  • Sankarasubramanian, A., and U. Lall (2003), Flood quantiles in a changing climate: Seasonal forecasts and causal relations, Water Resour. Res., 39(5), 1134, doi:10.1029/2002WR001593.
  • Seidou, O., T. B. M. J. Ouarda, M. Barbet, P. Bruneau, and B. Bobee (2006), A parametric Bayesian combination of local and regional information in flood frequency analysis, Water Resour. Res., 42, W11408, doi:10.1029/2005WR004397.
  • Smith, J. A. (1989), Regional flood frequency-analysis using extreme order-statistics of the annual peak record, Water Resour. Res., 25(2), 311317, doi:10.1029/WR025i002p00311.
  • Smith, J. B. (2008), Climate change is real: How can utilities cope with potential risks? J. Am. Water Works Assoc., 34, 1217.
  • Stedinger, J. R., and L. H. Lu (1995), Appraisal of regional and index flood quantile estimators, Stoch. Hydrol. Hydraul., 9, 4975.
  • Towler, E., B. Rajagopalan, R. S. Summers, and D. Yates (2010), An approach for probabilistic forecasting of seasonal turbidity threshold exceedance, Water Resour. Res., 46, W06511, doi:10.1029/2009WR007834.
  • U.S. Environmental Protection Agency (1989), Final surface water treatment rule, Federal Reg. 54:124:27486.
  • Wilbanks, T. J., P. Romero Lankao, M. Bao, F. Berkhout, S. Cairncross, J.-P. Ceron, M. Kapshe, R. Muir-Wood, and R. Zapata-Marti (2007), Industry, settlement and society, in Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by M. L. Parry, et al., 357390, Cambridge Univ. Press, Cambridge, UK.
  • Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier (2004), Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs, Clim. Change, 62, 189216.