SEARCH

SEARCH BY CITATION

References

  • Allen, D. M., D. C. Mackie, and M. Wei (2004), Groundwater and climate change: A sensitivity analysis for the Grand Forks aquifer, southern British Columbia, Canada, Hydrogeol. J., 12(3), 270290.
  • Apipattanavis, S., G. Podesta, B. Rajagopalan, and R. W. Katz (2007), A semiparametric multivariate and multisite weather generator, Water Resour. Res., 43, W11401, doi:10.1029/2006WR005714.
  • Berg, M. A., and D. M. Allen (2007), Low flow variability in groundwater- fed streams, Can. Water Resour. J., 32(3), 227245.
  • Buishand, T. A., and T. Brandsma (2001), Multisite simulation of daily precipitation and temperature in the Rhine basin by nearest-neighbor resampling, Water Resour. Res., 37, 27612776.
  • Cannon, A. J. (2008), Probabilistic multi-site precipitation downscaling by an expanded Bernoulli-gamma density network, J. Hydrometerol., 9(6), 12841300.
  • Cannon, A. J., P. H. Whitfield, and E. R. Lord (2002a), Synoptic map-pattern classification using recursive partitioning and principal component analysis, Mon. Weather Rev., 130, 11871206.
  • Cannon, A. J., P. H. Whitfield, and E. R. Lord (2002b), Automated, supervised synoptic map-pattern classification using recursive partitioning trees, in Preprints, The 16th Conference on Probability and Statistics in the Atmospheric Sciences, American Meteorological Society, J210J216.
  • Caya, D., and R. Laprise (1999), A semi-implicit semi-Lagrangian regional climate model: the Canadian RCM, Mon. Weather Rev., 127, 341362.
  • Chesnaux, R., and D. M. Allen (2008), Simulating nitrate leaching profiles in a highly permeable vadose zone, Env. Model. Assess., 13(4), 527539, doi:10.1007/s10666-007-9116-4.
  • CICS, Canadian Institute for Climate Studies (2003), Canadian Climate Change Scenarios, www.cics.uvic.ca/scenarios/. Accessed November 2009.
  • Davies, J. A., and D. C. McKay (1982), Estimating solar irradiance and components, Solar Energy, 29(1), 5564.
  • Delworth, T. L., et al. (2006), GFDL's CM2 global coupled climate models. Part I: formulation and simulation characteristics, J. Clim., 19(5), 643674, doi:10.1175/JCLI3629.1.
  • Environment Canada (2008), Canadian Centre for Climate Modeling and Analysis. Third Generation Coupled Global Climate Models. http://www.cccma.ec.gc.ca/models/cgcm3.shtml. Accessed November, 2008.
  • Environment Canada (2002), Canadian Climate Normals Online, CDCD West CD. http://www.climate.weatheroffice.ec.gc.ca/prods_servs/cdcd_iso_e.html. Accessed November 2008.
  • Flato, G. M., G. J. Boer, W. G. Lee, N. A. McFarlane, D. Ramsden, M. C. Reader, and A. J. Weaver (2000), The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate, Clim. Dyn., 16, 451467.
  • Gangopadhyay, S., M. Clark, and B. Rajagopalan (2005), Statistical downscaling using K-nearest neighbors, Water Resour. Res., 41, W02024, doi:10.1029/2004WR003444.
  • Gogolev, M. I. (2002), Assessing groundwater recharge with two unsaturated zone modeling technologies, Env. Geol., 42, 248258.
  • Holman, I. (2006), Climate change impacts on groundwater recharge-uncertainty, shortcomings, and the way forward? Hydrogeol. J., 14, 637647.
  • IPCC (Intergovernmental Panel on Climate Change) (2007), Climate Change 2007: The Physical Science Basis, in Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, U.K.
  • Imbert, A., and R. E. Benestad (2005), An improvement of analog model strategy for more reliable local climate change scenarios, Theoret. Appl. Clim., 82, 245255.
  • Jyrkama, M. I., and J. F. Sykes (2007), The impact of climate change on spatially varying groundwater recharge in the Grand River watershed (Ontario), J. Hydrol., 338, 237250.
  • Kalnay, E., et al. (1996), The NCEP/NCAR 40-Year Reanalysis Project, Bull. Amer. Meteorol. Soc., 77, 437471.
  • Laprise, R., D. Caya, M. Giguere, G. Bergeron, H. Cote, J.-P. Blanchet, G. J. Boer, and N. A. McFarlane (1998), Climate and climate change in Western Canada as simulated by the Canadian Regional Climate Model, Atmos. Ocean, 36, 119167.
  • Loaiciga, H. A., J. B. Valdes, R. Vogel, J. Garvey, and H. Schwarz (1999), Global warming and the hydrologic cycle, J. Hydrol., 174, 83127.
  • Mitchell, R. J., R. S. Babcock, S. Gelinas, L. Nanus, and D. E. Stasner (2003), Ground water quality: Nitrate distribution and source identification in the Abbotsford-Sumas Aquifer, northwestern Washington State, J. Env. Quality, 32, 789800.
  • Nakićenović, N., and R. Swart (Eds.) (2000), Special Report on Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, 599 pp., Cambridge University Press, Cambridge, U.K.
  • Racsko, P., L. Szeidl, and M. Semenov (1991), A serial approach to local stochastic weather models, Ecol. Modell., 57, 2741.
  • Rivard, C., C. Paniconi, M. J. Gauthier, G. François, M. Sulis, M. Camporese, M. Larocque, and D. Chaumont (2008), A modeling study of climate change impacts on recharge and surface-groundwater interactions for the Thomas Brook catchment (Annapolis Valley, Nova Scotia). In: Proceedings of GeoEdmonton, Canadian Geotechnical Society – International Association of Hydrogeologists-Canadian National Chapter Joint Annual Conference, Edmonton, Sept. 20 – 24 , 2008.
  • Rosenberg, N. J., D. J. Epstein, D. Wang, L. Vail, R. Srinivasan, and J. G. Arnold (1999), Possible impacts of global warming on the hydrology of the Ogallala Aquifer region, Clim. Change, 42, 677692.
  • Scanlon, B. R., M. Christman, R. C. Reedy, I. Porro, J. Simunek, and G. N. Flerchinger (2002), Intercode comparisons for simulating water balance of surficial sediments in semiarid regions, Water Resour. Res., 38(12), 1323, doi:10.1029/2001WR001233.
  • Schnur, R., and D. P. Lettenmaier (1998), A case study of statistical downscaling in Australia using weather classification by recursive partitioning, J. Hydrol., 212–213, 362379.
  • Schroeder, P. R., T. S. Dozier, P. A. Zappi, B. M. McEnroe, J. W. Sjostrom, and R. L. Peyton (1994), The Hydrologic Evaluation of Landfill Performance (HELP) model: Engineering documentation for version 3. EPA/600/R-94/168b, United States Environmental Protection Agency, Office of Research and Development, Washington, D.C., USA.
  • Schwarz, G. (1978), Estimating the dimension of a model, Ann. Stat., 6, 461464.
  • Scibek, J. (2005), Modelling the Impacts of Climate Change on Groundwater: A Comparative Study of Two Unconfined Aquifers in Southern British Columbia and Northern Washington State, M.Sc. Thesis, Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
  • Scibek, J., and D. M. Allen (2006a), Modeled Impacts of Predicted Climate Change on Recharge and Groundwater Levels, Water Resour. Res., 42, W11405, doi:10.1029/2005WR004742.
  • Scibek, J., and D. M. Allen (2006b), Comparing modelled responses of two high permeability, unconfined aquifers to predicted climate change, Global Planet. Change, 50, 5062.
  • Scibek, J., D. M. Allen, A. Cannon, and P. Whitfield (2007), Groundwater-surface water interaction under scenarios of climate change using a high-resolution transient groundwater model, J. Hydrol., 333, 165181, doi:10.1016/j.jhydrol.2006.08.005.
  • Semenov, M. A., R. J. Brooks, E. M. Barrow, and C. W. Richardson (1998), Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates, Clim. Res., 10, 95107.
  • Serrat-Capdevila, A., J. B. Valdes, J. G. Perez, K. Baird, L. J. Mata, and T. Maddock (2007), Modeling climate change impacts – and uncertainty – on the hydrology of a riparian system: The San Pedro Basin (Arizona/Sonora), J. Hydrol., 347, 4866.
  • Soil Conservation Service (1985), National Engineering Handbook: Section 4-Hydrology, Washington, D.C., U.S. Department of Agriculture.
  • Stahl, K., R. D. Moore, J. M. Shea, D. Hutchinson, and A. J. Cannon (2008), Coupled modelling of glacier and streamflow response to future climate scenarios, Water Resour. Res., 44, W02422, doi:10.1029/2007WR005956.
  • Toews, M. W., and D. M. Allen (2009a), Simulated response of groundwater to predicted recharge in a semi-arid region using a scenario of modelled climate change, Env. Res. Lett., 4(3), 035003.
  • Toews, M. W., and D. M. Allen (2009b), Evaluating different GCMs for predicting spatial recharge in an irrigated arid region, J. Hydrol., 374, 265281.
  • Vaccaro, J. J. (1992), Sensitivity of groundwater recharge estimates to climate variability and change, Columbia Plateau, Washington, J. Geophys. Res., 97(D3), 28212833.
  • Van Roosmalen, L., T. O. Sonnenborg, and K. H. Jensen (2009), Impact of climate and land use change on the hydrology of a large-scale agricultural catchment, Water Resour. Res., 45, W00A15, doi:10.1029/2007WR006760.
  • Van Roosmalen, L., B. S. B. Christensen, and T. O. Sonnenborg (2007), Regional differences in climate change impacts on groundwater and stream discharge in Denmark, Vadose Zone J., 6(3), 554571.
  • Washington, W. M., J. W. Weatherly, G. A. Meehl, A. J. Semtner Jr., T. W. Bettge, A. P. Craig, W. G. Strand Jr., J. Arblaster, W. B. Wayland, R. James, and Y. Zhang (2000), Parallel climate model (PCM) control and transient simulations, Clim. Dyn., 16(10), 755774.
  • Wilby, R. L., C. W. Dawson, and E. M. Barrow (2002), SDSM – a decision support tool for the assessment of regional climate change impacts, Env. Modell. Softw., 17, 145157.
  • Wilks, D. S., and R. L. Wilby (1999), The weather generation game: A review of stochastic weather models, Prog. Phys. Geog., 23, 329357.
  • Yates, D., S. Gangopadhyay, B. Rajagopalan, and K. Strzepek (2003), A technique for generating regional climate scenarios using a nearest-neighbor algorithm, Water Resour. Res., 39(7), 1199, doi:10.1029/2002WR001769.
  • Yusoff, I., K. M. Hiscock, and D. Conway (2002), Simulation of the impacts of climate change on groundwater resources in eastern England. In: Sustainable Groundwater Development, Geological Society of London, United Kingdom Geological Society Special Publications no. 193, 325344.
  • Zektser, I. S., and H. A. Loaiciga (1993), Groundwater fluxes in the global hydrologic cycle: Past, present, and future, J. Hydrol., 144, 405427.
  • Zorita, E., and H. von Storch (1999), The analog method - a simple statistical downscaling technique: Comparison with more complicated methods, J. Clim., 12, 24742489.