SEARCH

SEARCH BY CITATION

References

  • Adkins, J. F., K. McIntyre, and D. P. Schrag (2002), The salinity, temperature, and δ18O of the Glacial Deep Ocean, Science, 298, 17691773, doi:10.1126/science.1076252.
  • Amano, K., and S. Kiel (2007), Fossil vesicomyid bivalves from the North Pacific region, Veliger, 49, 270293.
  • Auzende, J. M., D. Bideau, E. Bonatti, M. Cannat, J. Honnorez, Y. Lagabrielle, J. Malavieille, V. Mamaloukas-Frangoulis, and C. Mevel (1989), Direct observation of a section through slow-spreading oceanic crust, Nature, 337, 726729, doi:10.1038/337726a0.
  • Bogdanov, Y. A., A. M. Sagalevitch, E. S. Chernyaev, A. M. Ashadze, E. G. Gurvich, V. N. Lukashin, G. V. Ivanov, and V. N. Peresypkin (1995), Hydrothermal field at 14°45′N on the Mid-Atlantic Ridge, Dokl. Akad. Nauk, 343, 353357.
  • Boss, K. J., and R. D. Turner (1980), The giant white clam from the Galapagos Rift, Calyptogena magnifica species novum, Malacologia, 20, 161194.
  • Brigaud, B., E. Pucéat, P. Pellenard, B. Vincent, and M. M. Joachimski (2008), Climatic fluctuations and seasonality during the Late Jurassic (Oxfordian-Early Kimmeridgian) inferred from δ18O of Paris Basin oyster shells, Earth Planet. Sci. Lett., 273, 5867, doi:10.1016/j.epsl.2008.06.015.
  • Brooks, J. M., M. C. Kennicutt II, R. R. Fay, T. J. McDonald, and R. Sassen (1984), Thermogenic gas hydrates in the Gulf of Mexico, Science, 226, 965967.
  • Charlou, J. L., J. P. Donval, Y. Fouquet, P. Jean-Baptiste, and N. Holm (2002), Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR), Chem. Geol., 191, 345359, doi:10.1016/S0009-2541(02)00134-1.
  • Charlou, J. L., J. P. Donval, T. Zitter, N. Roy, P. Jean-Baptiste, J. P. Foucher, J. Woodside, and Medinaut Scientific Party (2003), Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea, Deep Sea Res., Part I, 50, 941958, doi:10.1016/S0967-0637(03)00093-1.
  • Charlou, J. L., J. P. Donval, C. Konn, H. Ondreas, Y. Fouquet, P. Jean-Baptiste, and E. Fourre (2010), High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge, in Diversity of Hydrothermal Systems on Slow-Spreading Ocean Ridges, Geophys. Monogr. Ser., vol. 188, edited by P. Rona et al., AGU, Washington, D. C.
  • Chauvaud, L., A. Lorrain, R. B. Dunbar, Y.-M. Paulet, G. Thouzeau, F. Jean, J.-M. Guarini, and D. Mucciarone (2005), Shell of the Great Scallop Pecten maximus as a high frequency archive of paleoenvironmental change, Geochem. Geophys. Geosyst., 6, Q08001, doi:10.1029/2004GC000890.
  • Cherkashev, G., A. V. Ashadze, A. V. Gebruk, and E. M. Krylova (2000), New fields with manifestations of hydrothermal activity in the Logatchev area (14°N, Mid-Atlantic Ridge), InterRidge News, 9, 2627.
  • Childress, J. J., and C. R. Fisher (1992), The biology of hydrothermal vent animals: Physiology, biochemistry and autotrophic symbioses, in Oceanography and Marine Biology Annual Review, edited by M. Barnes, A. D. Ansell, and R. N. Gibson, pp. 337441, University College London Press, London.
  • Childress, J. J., C. R. Fisher, J. A. Favuzzi, and N. K. Sanders (1991), Sulfide and carbon-dioxide uptake by the hydrothermal vent clam, Calyptogena magnifica, and its chemoautotrophic symbionts, Physiol. Zool., 64, 14441470.
  • Colaço, A., F. Dehairs, D. Desbruyères, N. Le Bris, and P. M. Sarradin (2002), δ13C signature of hydrothermal mussels is related with the end-member fluid concentrations of H2S and CH4 at the Mid-Atlantic Ridge hydrothermal vent fields, Cah. Biol. Mar., 43, 259262.
  • Dando, P. R., and A. J. Southward (1986), Chemoautotrophy in bivalve molluscs of the genus Thyasira, J. Mar. Biol. Assoc. U. K., 66, 915929, doi:10.1017/S0025315400048529.
  • Dando, P. R., and B. Spiro (1993), Varying nutritional dependence of the thyasirid bivalves Thyasira sarsi and T. equalis on chemo-autotropic symbiotic bacteria, demonstrated by isotope ratios of tissue carbon and shell carbonate, Mar. Ecol. Prog. Ser., 92, 151158, doi:10.3354/meps092151.
  • Desbruyères, D., A. Almeida, M. Biscoito, T. Comtet, A. Khripounoff, N. Le Bris, P. M. Sarradin, and M. Segonzac (2000), A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: Dispersal vs. environmental controls, Hydrobiologia, 440, 201216, doi:10.1023/A:1004175211848.
  • Desbruyères, D., et al. (2001), Variations in deep-sea hydrothermal vent communities on the Mid-Atlantic Ridge near the Azores plateau, Deep Sea Res., Part I, 48, 13251346, doi:10.1016/S0967-0637(00)00083-2.
  • Dubilier, N., C. Bergin, and C. Lott (2008), Symbiotic diversity in marine animals: The art of harnessing chemosynthesis, Nat. Rev. Microbiol., 6, 725740, doi:10.1038/nrmicro1992.
  • Dufour, S. C. (2005), Gill anatomy and the evolution of symbiosis in the bivalve family Thyasiridae, Biol. Bull., 208, 200212, doi:10.2307/3593152.
  • Dyment, J., et al. (2009), Detailed investigation of hydrothermal site Rainbow, Mid-Atlantic Ridge, 36°13N: Cruise MoMARDream, InterRidge News, 19, 2224.
  • Epstein, S., R. Buchsbaum, H. A. Lowenstam, and H. C. Urey (1953), Revised carbonate-water isotopic temperature scale, Geol. Soc. Am. Bull., 64, 13151326, doi:10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2.
  • Escartín, J., D. K. Smith, J. Cann, H. Schouten, C. H. Langmuir, and S. Escrig (2008), Central role of detachment faults in accretion of slow-spreading oceanic lithosphere, Nature, 455, 790794, doi:10.1038/nature07333.
  • Fatton, E., and M. Roux (1981), Etapes de l'organisation microstructurale chez Calyptogena magnifica Boss et Turner, bivalve à croissance rapide des sources hydrothermales océaniques, C. R. Acad. Sci., 293, 6368.
  • Fouquet, Y., et al. (1997), Discovery and first submersible investigations on the Rainbow hydrothermal field on the MAR (36°14′N), Eos Trans. AGU, 78, 832.
  • Fouquet, Y., G. Cherkashov, J. L. Charlou, H. Ondreas, M. Cannat, N. Bortnikov, S. Silantiev, and J. Etoubleau (2007), Diversity of ultramafic hosted hydrothermal deposits on the Mid Atlantic Ridge: First submersible studies on Ashadze, Logatchev 2 and Krasnov vent fields during the Serpentine cruise, Eos Trans. AGU, 88(52), Fall Meet. Suppl., Abstract T51F-03.
  • Fujikura, K., S. Kojima, Y. Fujiwara, J. Hasimoto, and T. Okutani (2000), New distribution records of vesicomyid bivalves from deep-sea chemosynthesis-based communities in Japanese waters, Venus, 59, 103121.
  • Gaudron, S. M., F. Pradillon, M. Pailleret, S. Duperron, N. Le Bris, and F. Gaill (2010), Colonization of organic substrates deployed in deep-sea reducing habitats by symbiotic species and associated fauna, Mar. Environ. Res., 70, 112, doi:10.1016/j.marenvres.2010.02.002.
  • Gebruk, A. V., S. V. Galkin, A. L. Vereshchaka, L. I. Moskalev, and A. J. Southward (1997), Ecology and biogeography of hydrothermal vent fauna of the Mid-Atlantic Ridge, Adv. Mar. Biol., 32, 93144, doi:10.1016/S0065-2881(08)60016-4.
  • Gebruk, A. V., P. Chevaldonné, T. Shank, R. A. Lutz, and R. C. Vrijenhoek (2000), Deep-sea hydrothermal vent communities of the Logatchev area (14°45′N, Mid-Atlantic Ridge): Diverse biotopes and high biomass, J. Mar. Biol. Assoc. U. K., 80, 383393, doi:10.1017/S0025315499002088.
  • Gillikin, D. P., K. A. Hutchinson, and Y. Kumai (2009), Ontogenic increase in metabolic carbon in freshwater mussel shells (Pyganodon cataracta), J. Geophys. Res., 114, G01007, doi:10.1029/2008JG000829.
  • Gràcia, E., J. L. Charlou, J. Radford-Knoery, and L. Parson (2000), Non-transform offsets along the Mid-Atlantic Ridge south of the Azores (38°N–34°N): Ultramafic exposures and hosting of hydrothermal vents, Earth Planet. Sci. Lett., 177, 89103, doi:10.1016/S0012-821X(00)00034-0.
  • Grassle, J. F. (1987), The ecology of deep-sea hydrothermal vent communities, Adv. Mar. Biol., 23, 301362, doi:10.1016/S0065-2881(08)60110-8.
  • Grassle, J. F., L. S. Brown-Leger, L. Morse-Porteous, R. Petrecca, and I. Williams (1985), Deep-sea fauna of sediments in the vicinity of hydrothermal vents, Biol. Soc. Washington Bull., 6, 443452.
  • Grehan, A. J., and S. K. Juniper (1996), Clam distribution and subsurface hydrothermal processes at Chowder Hill (Middle Valley), Juan de Fuca Ridge, Mar. Ecol. Prog. Ser., 130, 105115, doi:10.3354/meps130105.
  • Grossman, E. L., and T. L. Ku (1986), Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects, Chem. Geol., 59, 5974, doi:10.1016/0009-2541(86)90044-6.
  • Hein, J. R., W. R. Normark, B. R. McIntyre, T. D. Lorenson, and C. L. Powell II (2006), Methanogenic calcite, 13C-depleted bivalve shells, and gas hydrate from a mud volcano offshore southern California, Geology, 34, 109112, doi:10.1130/G22098.1.
  • Hessler, R. R., and W. M. Smithey (1983), The distribution and community structure of megafauna at the Galapagos Rift hydrothermal vents, in Hydrothermal Processes at Seafloor Spreading Centers, edited by P. A. Rona et al., pp. 735770, Plenum, New York.
  • Ildefonse, B., D. K. Blackman, B. E. John, Y. Ohara, D. J. Miller, C. J. MacLeod, and I. O. D. P. E. S. Party (2007), Oceanic core complexes and crustal accretion at slow-spreading ridges, Geology, 35, 623626, doi:10.1130/G23531A.1.
  • Kelley, D. S., et al. (2005), A serpentinite-hosted ecosystem: The Lost City hydrothermal field, Science, 307, 14281434, doi:10.1126/science.1102556.
  • Kennicutt, M. C.II, R. A. Burke, I. R. MacDonald, J. M. Brooks, G. J. Denoux, and S. A. Macko (1992), Stable isotope partitioning in seep and vent organisms: Chemical and ecological significance, Chem. Geol., 101, 293310.
  • Kiel, S., and J. Peckmann (2007), Chemosymbiotic bivalves and stable carbon isotopes indicate hydrocarbon seepage at four unusual Cenozoic fossil localities, Lethaia, 40, 345357, doi:10.1111/j.1502-3931.2007.00033.x.
  • Kojima, S., T. Sasaki, K. Tamaki, Y. Fujiwara, K. Fujikura, and T. Okutani (2000), Bathymetrical zonation of chemoautosynthesis-based communities on the deepest area of the landward slope of the Japan Trench, JAMSTEC J. Deep Res., 17, 8993.
  • Kojima, S., K. Fujikura, and T. Okutani (2005), Genetic differentiation of two vesicomyid bivalves, Calyptogena okutanii and Calyptogena nankaiensis between seep areas off the central Honshu and hydrothermal vent fields in the Okinawa Through, Venus, 64, 4553.
  • Krantz, D., H. Stecher III, J. Wehmiller, A. Kaufman, C. Lord III, and S. Macko (1996), Diagenesis of Pleistocene mollusk shells from the U.S. Atlantic Coastal Plain, processes and scales, Geol. Soc. Am. Abstr. Programs, 28, 117.
  • Kroopnick, P. M. (1985), The distribution of 13C of ΣCO2 in the world oceans, Deep Sea Res., Part A, 32, 5784, doi:10.1016/0198-0149(85)90017-2.
  • Krylova, E. M., and R. Janssen (2006), Vesicomyidae from Edison Seamount (South West Pacific: Papua New Guinea: New Ireland fore-arc basin), Arch. Molluskenkd., 135, 231261, doi:10.1127/arch.moll/0003-9284/135/231-261.
  • Krylova, E. M., and H. Sahling (2006), Recent bivalve molluscs of the genus Calyptogena (Vesicomyidae), J. Molluscan Stud., 72, 359395, doi:10.1093/mollus/eyl022.
  • Krylova, E. M., H. Sahling, and R. Janssen (2010), Abyssogena: A new genus of the family Vesicomyidae (Bivalvia) from deep-water vents and seeps, J. Molluscan Stud., 76(2), 107132, doi:10.1093/mollus/eyp052.
  • Kuznetsov, K., G. Cherkashev, A. Lein, V. Shilov, F. Maksimov, K. Arslanov, T. Stepanova, N. Baranova, S. Chernov, and D. Tarasenko (2006), 230Th/U dating of massive sulfides from the Logatchev and Rainbow hydrothermal fields (Mid-Atlantic Ridge), Geochronometria, 25, 5155.
  • Lartaud, F., L. Emmanuel, M. de Rafelis, M. Ropert, N. Labourdette, C. A. Richardson, and M. Renard (2010a), A latitudinal gradient of seasonal temperature variation recorded in oyster shells from the coastal waters of France and the Netherlands, Facies, 56, 1325, doi:10.1007/s10347-009-0196-2.
  • Lartaud, F., L. Emmanuel, M. de Rafelis, S. Pouvreau, and M. Renard (2010b), Influence of food supply on the δ13C signature of mollusc shells: Implications for palaeoenvironmental reconstitutions, Geo-Mar. Lett., 30, 2334, doi:10.1007/s00367-00009-00148-00364.
  • Le Bris, N., and S. Duperron (2010), Chemosynthetic communities and biogeochemical energy pathways along the MAR: The case of Bathymodiolus azoricus, in Diversity of Hydrothermal Systems on Slow-Spreading Ocean Ridges, Geophys. Monogr. Ser., vol. 188, edited by P. Rona et al., AGU, Washington, D. C.
  • Le Douaran, S., H. D. Needham, and J. Francheteau (1982), Pattern of opening rates along the axis of the Mid-Atlantic Ridge, Nature, 300, 254257, doi:10.1038/300254a0.
  • Lietard, C., and C. Pierre (2008), High-resolution isotopic records (δ18O and δ13C) and cathodoluminescence study of lucinid shells from methane seeps of the eastern Mediterranean, Geo-Mar. Lett., 28, 195203, doi:10.1007/s00367-008-0100-z.
  • Lietard, C., and C. Pierre (2009), Isotopic signatures (δ18O and δ13C) of bivalve shells from cold seeps and hydrothermal vents, Geobios, 42, 209219, doi:10.1016/j.geobios.2008.12.001.
  • Little, C. T. S., and R. C. Vrijenhoek (2003), Are hydrothermal vent animals living fossils? Trends Ecol. Evol., 18, 582588, doi:10.1016/j.tree.2003.08.009.
  • Little, C. T. S., R. J. Herrington, V. V. Maslennikov, and V. V. Zaykov (1998), The fossil record of hydrothermal vent communities, Geol. Soc. Spec. Publ., 148, 259270, doi:10.1144/GSL.SP.1998.148.01.14.
  • McCaig, A. M., R. A. Cliff, J. Escartin, A. E. Fallick, and C. J. MacLeod (2007), Oceanic detachment faults very large volumes of black smoker fluids, Geology, 35, 935938, doi:10.1130/G23657A.1.
  • McConnaughey, T. A., and D. P. Gillikin (2008), Carbon isotopes in mollusk shell carbonates, Geo-Mar. Lett., 28, 287299, doi:10.1007/s00367-008-0116-4.
  • McConnaughey, T., J. Burdett, J. F. Whelan, and C. K. Paull (1997), Carbon isotopes in biological carbonates: Respiration and photosynthesis, Geochim. Cosmochim. Acta, 61, 611622, doi:10.1016/S0016-7037(96)00361-4.
  • Mével, C. (2003), Serpentinization of abyssal peridotites at mid-ocean ridges, C. R. Geosci., 335, 825852, doi:10.1016/j.crte.2003.08.006.
  • Mullineaux, L. S., C. H. Peterson, F. Micheli, and S. W. Mills (2003), Succession mechanism varies along a gradient in hydrothermal fluid at deep-sea vents, Ecol. Monogr., 73, 523542, doi:10.1890/02-0674.
  • Mullineaux, L. S., F. Micheli, C. H. Peterson, H. S. Lenihan, and N. Markus (2009), Imprint of past environmental regimes on structure and succession of a deep-sea hydrothermal vent community, Oecologia, 161, 387400, doi:10.1007/s00442-009-1390-1.
  • Naraoka, H., T. Naito, T. Yamanaka, U. Tsunogai, and K. Fujikura (2008), A multi-isotope study of deep-sea mussels at three different hydrothermal vent sites in the northwestern Pacific, Chem. Geol., 255, 2532, doi:10.1016/j.chemgeo.2008.05.015.
  • Oliver, P. G., and A. M. Holmes (2006), New species of Thyasiridae (Bivalvia) from chemosynthetic communities in the Atlantic Ocean, J. Conchol., 39, 175.
  • Oliver, P. G., and A. M. Holmes (2007), A new species of Axinus (Bivalvia, Thyasiroidea) from the Baby Bare Seamount, Cascadia Basin, NE Pacific with a description of the anatomy, J. Conchol., 39, 363375.
  • Oliver, P. G., and I. J. Killeen (2002), The Thyasiridae (Mollusca: Bivalvia) of the British continental shelf and North Sea oil fields: An identification manual, BIOMÔR Rep. 3, 73 pp., Natl. Mus. and Galleries of Wales, Cardiff.
  • Olu, K., M. Sibuet, F. Harmegnies, J. P. Foucher, and A. Fiala-Medioni (1996), Spatial distribution of diverse cold seep communities living on various diapiric structures of the southern Barbados prism, Prog. Oceanogr., 38, 347356, doi:10.1016/S0079-6611(97)00006-2.
  • Olu-Le Roy, K., R. von Cosel, S. Hourdez, S. L. Carney, and D. Jollivet (2007), Amphi-Atlantic cold seep Bathymodiolus species complexes across the equatorial belt, Deep Sea Res., Part I, 54, 18901911, doi:10.1016/j.dsr.2007.07.004.
  • Payne, C. M., and J. A. Allen (1991), The morphology of deep-sea Thyasiridae (Mollusca: Bivalvia) from the Atlantic Ocean, Philos. Trans. R. Soc. London, Ser. B, 334, 481562, doi:10.1098/rstb.1991.0128.
  • Peek, A. S., R. G. Gustafson, R. A. Lutz, and R. C. Vrijenhoek (1997), Evolutionary relationships of deep-sea hydrothermal vent and cold-water clams (Bivalvia: Vesicomyidae): Results from the mitochondrial cytochrome oxidase subunit I, Mar. Biol., 130, 151161, doi:10.1007/s002270050234.
  • Peek, A. S., B. S. Gaut, R. A. Feldman, J. P. Barry, R. E. Kochevar, R. A. Lutz, and R. C. Vrijenhoek (2000), Neutral and nonneutral mithochondrial genetic variation in deep-sea clams from the family Vesicomyidae, J. Mol. Evol., 50, 141153.
  • Petersen, S., K. Kuhn, T. Kuhn, N. Augustin, R. Hékinian, L. Franz, and C. Borowski (2009), The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14°45′N, Mid-Atlantic Ridge) and its influence on massive sulfide formation, Lithos, 112, 4056, doi:10.1016/j.lithos.2009.02.008.
  • Rio, M., M. Roux, M. Renard, and E. Schein (1992), Chemical and isotopic features of present day bivalve shells from hydrothermal vents or cold seeps, Palaios, 7, 351360, doi:10.2307/3514821.
  • Rodrigues, C. F., P. G. Oliver, and M. R. Cunha (2008), Thyasiroidea (Mollusca: Bivalvia) from the mud volcanoes of the Gulf of Cadiz (NE Atlantic), Zootaxa, 1752, 4156.
  • Schmaljohann, R., E. Faber, M. J. Whiticar, and P. R. Dando (1990), Co-existence of methane- and sulphur-based endosymbioses between bacteria and invertebrates at a site in the Skagerrak, Mar. Ecol. Prog. Ser., 61, 119124, doi:10.3354/meps061119.
  • Schmidt, C., R. Vuillemin, C. Le Gall, F. Gaill, and N. Le Bris (2008), Geochemical energy sources for microbial primary production in the environment of hydrothermal vent shrimps, Mar. Chem., 108, 1831, doi:10.1016/j.marchem.2007.09.009.
  • Schöne, B. R., and O. Giere (2005), Growth increments and stable isotope variation in shells of the deep-sea hydrothermal vent bivalve mollusk Bathymodiolus brevior from the North Fiji Basin, Pacific Ocean, Deep Sea Res., Part I, 52, 18961910, doi:10.1016/j.dsr.2005.06.003.
  • Schrag, D. P., J. F. Adkins, K. McIntyre, J. L. Alexander, D. A. Hodell, C. D. Charles, and J. F. McManus (2002), The oxygen isotopic composition of seawater during the Last Glacial Maximum, Quat. Sci. Rev., 21, 331342, doi:10.1016/S0277-3791(01)00110-X.
  • Seewald, J. S., W. E. Seyfried Jr., and W. C. Shanks III (1994), Variations in the chemical and stable isotope composition of carbon and sulfur species during organic-rich sediment alteration: An experimental and theoretical study of hydrothermal activity at Guaymas Basin, Gulf of California, Geochim. Cosmochim. Acta, 58, 50655082, doi:10.1016/0016-7037(94)90232-1.
  • Ségalen, L., and J. M. Lee-Thorp (2009), Palaeoecology of late Early Miocene fauna in the Namib based on 13C/12C and 18O/16O ratios of tooth enamel and ratite eggshell carbonate, Palaeogeogr. Palaeoclimatol. Palaeoecol., 277, 191198, doi:10.1016/j.palaeo.2009.03.018.
  • Segonzac, M. (1992), Les peuplements associés à l'hydrothermalisme océanique du Snake Pit (dorsale médio-atlantique; 23°N, 3480 m: Coposition et microdistribution de la mégafaune, C. R. Acad. Sci., 314, 593600.
  • Simoneit, B. R. T., A. Y. Lein, V. I. Peresypkin, and G. A. Osipov (2004), Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow field (Mid-Atlantic Ride at 36°N), Geochim. Cosmochim. Acta, 68, 22752294, doi:10.1016/j.gca.2003.11.025.
  • Southward, E. C. (1986), Gill symbionts in thyasirids and other bivalve molluscs, J. Mar. Biol. Assoc. U. K., 66, 889914, doi:10.1017/S0025315400048517.
  • Southward, E. C., A. V. Gebruk, H. Kennedy, A. J. Southward, and P. Chevaldonné (2001), Different energy sources for three symbiont-dependent bivalve molluscs at the Logatchev hydrothermal site (Mid-Atlantic Ridge), J. Mar. Biol. Assoc. U. K., 81, 655661.
  • Sponheimer, M., and J. M. Lee-Thorp (1999), Isotopic evidence for the diet of an early Hominid, Australopithecus africanus, Science, 283, 368370, doi:10.1126/science.283.5400.368.
  • Stuiver, M., and H. A. Polach (1977), Discussion: Reporting of 14C data, Radiocarbon, 19(3), 355363.
  • Tarasov, V. G., A. V. Gebruk, A. N. Mironov, and L. I. Moskalev (2005), Deep-sea and shallow-water hydrothermal vent communities: Two different phenomena? Chem. Geol., 224, 539, doi:10.1016/j.chemgeo.2005.07.021.
  • Tunnicliffe, V. (1991), The biology of hydrothermal vents: Ecology and evolution, Oceanogr. Mar. Biol. Annu. Rev., 29, 319407.
  • Van Dover, C. L. (1995), Ecology of Mid-Atlantic Ridge hydrothermal vents, Geol. Soc. Spec. Publ., 87, 257294, doi:10.1144/GSL.SP.1995.087.01.21.
  • Van Dover, C. L. (2000), The Ecology of Deep-Sea Hydrothermal Vents, Princeton Univ. Press, Princeton, N. J.
  • Van Dover, C. L., C. R. German, K. G. Speer, L. M. Parson, and R. C. Vrijenhoek (2002), Evolution and biogeography of deep-sea vent and seep invertebrates, Science, 295, 12531257, doi:10.1126/science.1067361.
  • Voight, J. R., and A. J. Grehan (2000), Egg brooding by deep-sea octopuses in the north Pacific Ocean, Biol. Bull., 198, 94100, doi:10.2307/1542807.
  • von Cosel, R., and K. Olu (2009), Large Vesicomyidae (Mollusca: Bivalvia) from cold seeps in the gulf of Guinea off the coasts of Gabon, Congo and northern Angola, Deep Sea Res., Part II, 56, 23502379, doi:10.1016/j.dsr2.2009.04.016.
  • Welhan, J. A. (1988), Origins of methane in hydrothermal systems, Chem. Geol., 71, 183198, doi:10.1016/0009-2541(88)90114-3.
  • Woodring, W. P. (1938), Lower Pliocene mollusks and echinoids from the Los Angeles Basin, California, U.S. Geol. Surv. Prof. Pap., 190, 158.
  • Zeebe, R. E., and D. Wolf-Galdrow (2001), CO2 in Seawater: Equilibrium, Kinetics, Isotopes, 346 pp., Elsevier, Amsterdam.