SEARCH

SEARCH BY CITATION

References

  • Aalto, R., et al. (2006), Geomorphic controls on Andean denudation rates, J. Geol., 114, 8599, doi:10.1086/498101.
  • Ahnert, F. (1970), Functional relationships between denudation, relief, and uplift in large mid-latitude drainage basins, Am. J. Sci., 268, 243263.
  • Allen, P. A. (2008), From landscapes into geological history, Nature, 451, 274276, doi:10.1038/nature06586.
  • Avouac, J. P., and E. B. Burov (1996), Erosion as a driving mechanism of intracontinental mountain growth, J. Geophys. Res., 101(B8), 17,74717,769, doi:10.1029/96JB01344.
  • Babault, J., et al. (2005), Influence of piedmont sedimentation on erosion dynamics of an uplifting landscape: An experimental approach, Geology, 33(4), 301304, doi:10.1130/G21095.1.
  • Beyssac, O., M. Simoes, J. P. Avouac, K. A. Farley, Y.-G. Chen, Y.-C. Chan, and B. Goffé (2007), Late Cenozoic metamorphic evolution and exhumation of Taiwan, Tectonics, 26, TC6001, doi:10.1029/2006TC002064.
  • Binnie, S. A., et al. (2007), Tectonic uplift, threshold hillslopes, and denudation rates in a developing mountain range, Geology, 35, 743746, doi:10.1130/G23641A.1.
  • Bonnet, S., and A. Crave (2003), Landscape response to climate change: Insights from experimental modeling and implications for tectonic versus climatic uplift of topography, Geology, 31(2), 123126, doi:10.1130/0091-7613(2003)031<0123:LRTCCI>2.0.CO;2.
  • Bonnet, S., and A. Crave (2006), Macroscale dynamics of experimental landscapes, in Analogue and Numerical Modelling of Crustal-Scale Processes, edited by S. J. H. Buiter, and G. Schreurs, Geol. Soc. Spec. Publ., 253, 327339.
  • Braun, J. (2006), Recent advances and current problems in modelling surface processes and their interactions with tectonics and crustal deformation, in Analog and Numerical Modelling Of Crustal-Scale Processes, edited by S. J. H. Buiter, and G. Schreurs, Geol. Soc. Spec. Publ., 253, 307325.
  • Braun, J., and M. Sambridge (1997), Modelling landscape evolution on geologic time scales: A new method based on irregular spatial discretization, Basin Res., 9, 2752, doi:10.1046/j.1365-2117.1997.00030.x.
  • Braun, J., et al. (2001), Sediment transport mechanisms on soil-mantled hillslopes, Geology, 29(8), 683686, doi:10.1130/0091-7613(2001)029<0683:STMOSM>2.0.CO;2.
  • Carretier, S., and F. Lucazeau (2005), How does alluvial sedimentation at range fronts modify the erosional dynamics of mountain catchments? Basin Res., 17(3), 361381, doi:10.1111/j.1365-2117.2005.00270.x.
  • Conrad, C. P., and M. Gurnis (2003), Seismic tomography, surface uplift, and the breakup of Gondwanaland: Integrating mantle convection backwards in time, Geochem. Geophys. Geosyst., 4(3), 1031, doi:10.1029/2001GC000299.
  • Dadson, S. J., et al. (2003), Links between erosion, runoff variability and seismicity in the Taiwan orogen, Nature, 426, 648651, doi:10.1038/nature02150.
  • Dadson, S. J., et al. (2004), Earthquake-triggered increase in sediment delivery from an active mountain belt, Geology, 32(8), 733736, doi:10.1130/G20639.1.
  • Davy, P., and A. Crave (2000), Upscaling local-scale transport processes in large-scale relief dynamics, Phys. Chem. Earth, 25(6–7), 533541.
  • Dietrich, W. E., D. G. Bellugi, L. S. Sklar, J. D. Stock, A. M. Heimsath, and J. J. Roering (2003), Geomorphic transport laws for predicting landscape form and dynamics, in Prediction in Geomorphology, Geophys. Monogr. Ser., vol. 135, edited by P. R. Wilcock, and R. M. Iverson, pp. 103132, doi:10.1029/135GM09, AGU, Washington, D. C.
  • England, P., and P. Molnar (1990), Surface uplift, uplift of rocks, and exhumation of rocks, Geology, 18, 11731177, doi:10.1130/0091-7613(1990)018<1173:SUUORA>2.3.CO;2.
  • Fluteau, F., G. Ramstein, and J. Besse (1999), Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model, J. Geophys. Res., 104(D10), 11,99512,018, doi:10.1029/1999JD900048.
  • Gaillardet, J., et al. (1999), Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers, Chem. Geol., 159, 330, doi:10.1016/S0009-2541(99)00031-5.
  • Galy, A., and C. France-Lanord (2001), Higher erosion rates in the Himalaya: Geochemical constraints on riverine fluxes, Geology, 29(1), 2326, doi:10.1130/0091-7613(2001)029<0023:HERITH>2.0.CO;2.
  • Galy, V., et al. (2007), Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system, Nature, 450, 407410, doi:10.1038/nature06273.
  • Galy, V., et al. (2008), Recycling of graphite during Himalayan erosion: A geological stabilization of carbon in the crust, Science, 233, 943945, doi:10.1126/science.1161408.
  • Godard, V., et al. (2006), Numerical modelling of erosion processes in the Himalayas of Nepal: Effects of spatial variations of rock strength and precipitation, in Analogue and Numerical Modelling of Crustal-Scale Processes, edited by S. J. H. Buiter, and G. Schreurs, Geol. Soc. Spec. Publ., 253, 341358.
  • Hay, W. W. (1998), Detrital sediment fluxes from continents to oceans, Chem. Geol., 145, 287323, doi:10.1016/S0009-2541(97)00149-6.
  • Heller, P. L., and C. Paola (1989), The paradox of Lower Cretaceous gravels and the initiation of thrusting in the Sevier orogenic belt, United States Western Interior, Geol. Soc. Am. Bull., 101, 864875, doi:10.1130/0016-7606(1989)101<0864:TPOLCG>2.3.CO;2.
  • Howard, A. D., W. E. Dietrich, and M. A. Seidl (1994), Modeling fluvial erosion on regional to continental scales, J. Geophys. Res., 99(B7), 13,97113,986, doi:10.1029/94JB00744.
  • Hulme, M. (1992), A 1951–80 global land precipitation climatology for the evaluation of general circulation models, Clim. Dyn., 7, 5772, doi:10.1007/BF00209609.
  • Kirchner, J. W., et al. (2001), Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales, Geology, 29(7), 591594, doi:10.1130/0091-7613(2001)029<0591:MEOYKY>2.0.CO;2.
  • Kooi, H., and C. Beaumont (1996), Large-scale geomorphology: Classical concepts reconciled and integrated with contemporary ideas via a surface processes model, J. Geophys. Res., 101(B2), 33613386, doi:10.1029/95JB01861.
  • Lague, D., A. Crave, and P. Davy (2003), Laboratory experiments simulating the geomorphic response to tectonic uplift, J. Geophys. Res., 108(B1), 2008, doi:10.1029/2002JB001785.
  • Lague, D., N. Hovius, and P. Davy (2005), Discharge, discharge variability, and the bedrock channel profile, J. Geophys. Res., 110, F04006, doi:10.1029/2004JF000259.
  • Lavé, J. (2005), Analytic solution of the mean elevation of a watershed dominated by fluvial incision and hillslope landslides, Geophys. Res. Lett., 32, L11403, doi:10.1029/2005GL022482.
  • Ludwig, W., and J.-L. Probst (1998), River sediment discharge to the oceans: Present-day controls and global budgets, Am. J. Sci., 298, 265295.
  • Meade, R. H., and R. S. Parker (1985), Sediments in rivers of the United States, U.S. Geol. Surv. Water Supply Pap., 2275, 4960.
  • Métivier, F., and Y. Gaudemer (1999), Stability of output fluxes of large rivers in South and East Asia during the last 2 million years: Implications on floodplain processes, Basin Res., 11(4), 293303, doi:10.1046/j.1365-2117.1999.00101.x.
    Direct Link:
  • Meunier, P., et al. (2006), Flow pattern and sediment transport in a braided river: The “torrent de St Pierre” (French Alps), J. Hydrol., 330, 496505, doi:10.1016/j.jhydrol.2006.04.009.
  • Miller, K. G., et al. (2005), The Phanerozoic record of global sea-level change, Science, 310, 12931298, doi:10.1126/science.1116412.
  • Milliman, J. D., and J. P. M. Syvitski (1992), Geomorphic / tectonic control of sediment discharge to the ocean: The importance of small mountain rivers, J. Geol., 100, 525544, doi:10.1086/629606.
  • Millot, R., et al. (2002), The global control of silicate weathering rates and the coupling with physical erosion: New insights from rivers of the Canadian Shield, Earth Planet. Sci. Lett., 196, 8398, doi:10.1016/S0012-821X(01)00599-4.
  • Ohmori, H. (2003), The paradox of equivalence of the Davisian end-peneplain and Penckian primary peneplain, in Concepts and Modelling in Geomorphology: International Perspectives, edited by I. S. Evans et al., pp. 332, Terrapub, Tokyo.
  • Ouimet, W. B., et al. (2009), Beyond threshold hillslopes: Channel adjustment to base-level fall in tectonically active mountain ranges, Geology, 37, 579582, doi:10.1130/G30013A.1.
  • Padgett, G. V., and R. Ehrlich (1976), Paleohydrologic analysis of a late Carboniferous fluvial system, Southern Morocco, Geol. Soc. Am. Bull., 87, 11011104, doi:10.1130/0016-7606(1976)87<1101:PAOALC>2.0.CO;2.
  • Paola, C., and D. Mohrig (1996), Palaeohydraulics revisited: Palaeoslope estimation in coarse-grained braided rivers, Basin Res., 8, 243254, doi:10.1046/j.1365-2117.1996.00253.x.
    Direct Link:
  • Pazzaglia, F. J., and M. T. Brandon (1996), Macrogeomorphic evolution of the post-Triassic Appalachian mountains determined by deconvolution of the offshore basin sedimentary record, Basin Res., 8(3), 255278, doi:10.1046/j.1365-2117.1996.00274.x.
    Direct Link:
  • Pelletier, J. D. (2004), The influence of piedmont deposition on the time scale of mountain-belt denudation, Geophys. Res. Lett., 31, L15502, doi:10.1029/2004GL020052.
  • Pinet, P., and M. Souriau (1988), Continental erosion and large-scale relief, Tectonics, 7, 563582, doi:10.1029/TC007i003p00563.
  • Riebe, C. S., et al. (2001), Minimal climatic control on erosion rates in the Sierra Nevada, Calif. Geol., 29(5), 447450.
  • Riebe, C. S., et al. (2004), Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes, Earth Planet. Sci. Lett., 224, 547562, doi:10.1016/j.epsl.2004.05.019.
  • Rouby, D., et al. (2009), Sediment supply to the Orange sedimentary system over the last 150 My: An evaluation from sedimentation/denudation balance, Mar. Pet. Geol., 26(6), 782794, doi:10.1016/j.marpetgeo.2008.08.004.
  • Rowley, D. B., and C. N. Garzione (2007), Stable-isotope paleoaltimetry, Annu. Rev. Earth Planet. Sci., 35, 463508, doi:10.1146/annurev.earth.35.031306.140155.
  • Schaller, M., et al. (2001), Large-scale erosion rates from in situ-produced cosmogenic nuclides in European river sediments, Earth Planet. Sci. Lett., 188, 441458, doi:10.1016/S0012-821X(01)00320-X.
  • Schumm, S. A. (1985), Patterns of alluvial rivers, Annu. Rev. Earth Planet. Sci., 13, 527, doi:10.1146/annurev.ea.13.050185.000253.
  • Schumm, S. A., and H. R. Khan (1972), Experimental study of channel patterns, Geol. Soc. Am. Bull., 83, 17551770, doi:10.1130/0016-7606(1972)83[1755:ESOCP]2.0.CO;2.
  • Sepulchre, P., et al. (2006), Tectonic uplift and eastern Africa aridification, Science, 313, 14191423, doi:10.1126/science.1129158.
  • Simoes, M., J. P. Avouac, O. Beyssac, B. Goffé, K. A. Farley, and Y.-G. Chen (2007), Mountain building in Taiwan: A thermokinematic model, J. Geophys. Res., 112, B11405, doi:10.1029/2006JB004824.
  • Sklar, L. S., and W. E. Dietrich (2004), A mechanistic model for river incision into bedrock by saltating bed load, Water Resour. Res., 40, W06301, doi:10.1029/2003WR002496.
  • Sklar, L. S., and W. E. Dietrich (2006), The role of sediment in controlling steady-state bedrock channel slope: Implications of the saltation-abrasion incision model, Geomorphology, 82, 5883, doi:10.1016/j.geomorph.2005.08.019.
  • Summerfield, M. (2007), Constraining the surface uplift and denudational record of southern Africa, in TOPOAFRICA - Evolution of African topography over the last 250 My, Mem. Geosci. Rennes, vol. X, edited by J. Braun et al., pp. xxxx, Géosci. Rennes, UMR 6118, Univ. Rennes 1, Rennes, France.
  • Summerfield, M. A., and N. J. Hulton (1994), Natural controls of fluvial denudation rates in major world drainage basins, J. Geophys. Res., 99(B7), 13,87113,883, doi:10.1029/94JB00715.
  • Syvitski, J. P. M., and J. D. Milliman (2007), Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean, J. Geol., 115, 119, doi:10.1086/509246.
  • Tucker, G. E. (2004), Drainage basin sensitivity to tectonic and climatic forcing: Implications of a stochastic model for the role of entrainment and erosion threshold, Earth Surf. Processes Landforms, 29, 185205, doi:10.1002/esp.1020.
  • Tucker, G. E., and R. L. Bras (1998), Hillslope processes, drainage density, and landscape morphology, Water Resour. Res., 34(10), 27512764, doi:10.1029/98WR01474.
  • Tucker, G. E., and G. R. Hancock (2010), Modelling landscape evolution, Earth Surf. Processes Landforms, 35, 2850, doi:10.1002/esp.1952.
  • Tucker, G. E., and R. L. Slingerland (1997), Drainage basin responses to climate change, Water Resour. Res., 33(8), 20312047, doi:10.1029/97WR00409.
  • von Blanckenburg, F. (2005), The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment, Earth Planet. Sci. Lett., 237, 462479, doi:10.1016/j.epsl.2005.06.030.
  • von Blanckenburg, F., T. Hewawasam, and P. W. Kubik (2004), Cosmogenic nuclide evidence for low weathering and denudation in the wet, tropical highlands of Sri Lanka, J. Geophys. Res., 109, F03008, doi:10.1029/2003JF000049.
  • Whipple, K. X., and B. J. Meade (2004), Controls on the strength of coupling among climate, erosion, and deformation in two-sided, frictional orogenic wedges at steady state, J. Geophys. Res., 109, F01011, doi:10.1029/2003JF000019.
  • Whipple, K. X., and B. J. Meade (2006), Orogen response to changes in climatic and tectonic forcing, Earth Planet. Sci. Lett., 243, 218228, doi:10.1016/j.epsl.2005.12.022.
  • Whipple, K. X., and G. E. Tucker (1999), Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs, J. Geophys. Res., 104(B8), 17,66117,674, doi:10.1029/1999JB900120.
  • Willett, S. D., and M. T. Brandon (2002), On steady states of mountain belts, Geology, 30(2), 175178, doi:10.1130/0091-7613(2002)030<0175:OSSIMB>2.0.CO;2.