Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change



[1] Anthropogenic land cover change (ALCC) is one of the few climate forcings with still unknown sign of their climate response. Major uncertainty results from the often counteracting temperature responses to biogeochemical as compared to biogeophysical effects. Here, we separate the strength of these two effects for ALCC during the last millennium. We add unprecedented detail by (i) using a coupled atmosphere/ocean general circulation model (GCM), and (ii) applying a high-detail reconstruction of historical ALCC. We find that biogeophysical effects have a slight cooling influence on global mean temperature (−0.03 K in the 20th century), while biogeochemical effects lead to strong warming (0.16–0.18 K). During the industrial era, both effects cause significant changes in certain regions; only few regions, however, experience biogeophysical cooling strong enough to dominate the overall temperature response. This study therefore suggests that the climate response to historical ALCC, both globally and in most regions, is dominated by the rise in CO2 caused by ALCC emissions.