SEARCH

SEARCH BY CITATION

References

  • Ahnert, F. (1970), Functional relationships between denudation, relief, and uplift in large, mid–latitude drainage basins, Am. J. Sci., 268, 243263.
  • Arne, D. C. (1994), Phanerozoic exhumation history of northern Prince Charles Mountains (East Antarctica), Antarct. Sci., 6, 6984.
  • Bernet, M., M. Zattin, J. I. Garver, M. T. Brandon, and J. A. Vance (2001), Steady-state exhumation of the European Alps, Geology, 29, 3538.
  • Bo, S., M. J. Siegert, S. M. Mudd, D. E. Sugden, S. Fujita, C. Xiangbin, J. Yunyun, T. Xueyuan, and L. Yuansheng (2009), The Gamburtsev Mountains and the origin and early evolution of the Antarctic ice sheet, Nature, 459, 690693.
  • Boger, S. D., C. J. Carson, C. M. Fanning, J. M. Hergt, C. J. L. Wilson, and J. D. Woodhead (2002), Pan–African intraplate deformation in the northern Prince Charles Mountains, East Antarctica, Earth Planet. Sci. Lett., 195, 195210.
  • Brandon, M. T., M. K. Roden-Tice, and J. I. Garver (1998), Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State, Geol. Soc. Am. Bull., 110, 9851009.
  • Cooper, A. K., and P. E. O'Brien (2004), Leg 188 synthesis: Transitions in the glacial history of the Prydz Bay region, East Antarctica, from ODP drilling, Proc. Ocean Drill. Program Sci. Results, 188, doi:10.2973/odp.proc.sr.188.001.2004.
  • Dalziel, I. W. D. (1992), Antarctica: A tale of two supercontinents? Annu. Rev. Earth Planet. Sci., 20, 501526.
  • DeConto, R. M., and D. Pollard (2003), Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2, Nature, 421, 245249.
  • Fabel, D., A. P. Stroeven, J. Harbor, J. Kleman, D. Elmore, and D. Fink (2002), Landscape preservation under Fennoscandian ice sheets determined from in situ produced 10Be and 26Al, Earth Planet. Sci. Lett., 201, 397406.
  • Fitzsimons, I. C. W. (2000), Grenville-age basement provinces in East Antarctica: Evidence for three separate collisional orogens, Geology, 28, 879882.
  • Hallam, A. (1985), A review of Mesozoic climates, J. Geol. Soc., 142, 433445.
  • Hallet, B., L. Hunter, and J. Bogen (1996), Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications, Global Planet. Change, 12, 213235.
  • Harrowfield, M., G. R. Holdgate, C. J. L. Wilson, and S. McLoughlin (2005), Tectonic significance of the Lambert graben, East Antarctica: Reconstructing the Gondwanan rift, Geology, 33, 197200.
  • Holdgate, G. R., S. McLoughlin, A. N. Drinnan, R. B. Finkelman, J. C. Willett, and L. A. Chiehowsky (2005), Inorganic chemistry, petrography and palaeobotany of Permian coals in the Prince Charles Mountains, East Antarctica, Int. J. Coal Geol., 63, 156177.
  • Jamieson, S. S. R., and D. E. Sugden (2008), Landscape evolution of Antarctica, U.S. Geol. Surv. Open File Rep., 2007-1047, doi:10.3133/of2007-1047.kp05.
  • Jamieson, S. S. R., N. R. J. Hulton, D. E. Sugden, A. J. Payne, and J. Taylor (2005), Cenozoic landscape evolution of the Lambert Basin, East Antarctica: The relative role of rivers and ice sheets, Global Planet. Change, 45, 3549.
  • Lisker, F. (2002), Review of fission track studies in northern Victoria Land, Antarctica—Passive margin evolution versus uplift of the Transantarctic Mountains, Tectonophysics, 349, 5773.
  • Lisker, F., C. J. L. Wilson, and H. J. Gibson (2007), Thermal history of the Vestfold Hills (East Antarctica) between Lambert rifting and Gondwana break-up: Evidence from apatite fission track data, Antarct. Sci., 19, 97106.
  • Lorencak, M., B. P. Kohn, K. G. Osadetz, and A. J. W. Gleadow (2004), Combined apatite fission track and (U-Th)/He thermochronometry in a slowly cooled terrane: Results from a 3440-m-deep drill hole in the southern Canadian Shield, Earth Planet. Sci. Lett., 227, 87104.
  • Lythe, M., D. Vaughan, and the BEDMAP Consortium (2000), BEDMAP bed topography of the Antarctic: Digital topographic data, Brit. Antarct. Surv., Cambridge, U. K. (Available at http://www.antarctica.ac.uk/bas_research/data/access/bedmap/).
  • Matmon, A., R. Bierman, J. Larsen, S. Southworth, M. Pavich, and M. Caffee (2003), Temporally and spatially uniform rates of erosion in the southern Appalachian Great Smoky Mountains, Geology, 31, 155158.
  • Miller, K., J. D. Wright, M. E. Katz, J. V. Browning, B. S. Cramer, B. S. Wade, and S. F. Mizintseva (2008), A view of Antarctic ice-sheet evolution from sea-level and deep-sea isotope changes during the Late Cretaceous–Cenozoic, in Antarctica: A Keystone in a Changing World: Proceedings of the 10th International Symposium on Antarctic Earth Science, edited by A. K. Cooper, pp. 5170, Natl. Acad. Press, Washington, D. C.
  • Montgomery, D. R., and M. T. Brandon (2002), Topographic controls on erosion rates in tectonically active mountain ranges, Earth Planet. Sci. Lett., 201, 481489.
  • Reiners, P. W., and M. T. Brandon (2006), Using thermochronology to understand orogenic erosion, Annu. Rev. Earth Planet. Sci., 34, 419466.
  • Shuster, D. L., T. A. Ehlers, M. E. Rusmoren, and K. A. Farley (2005), Rapid glacial erosion at 1.8 Ma revealed by 4He/3He thermochronometry, Science, 310, 16681670.
  • Sleep, N. H. (2006), Mantle plumes from top to bottom, Earth Sci. Rev., 77, 231271.
  • Smith, A. M., T. Murray, K. W. Nicholls, K. Makinson, G. Adalgeirsdottir, A. Behar, and D. G. Vaughan (2007), Rapid erosion, drumlin formation, and changing hydrology beneath an Antarctic ice stream, Geology, 35, 127130.
  • Staiger, J. W., J. Gosse, E. C. Little, D. J. Utting, R. Finkel, J. V. Johnson, and J. Fastook (2006), Glacial erosion and sediment dispersion from detrital cosmogenic nuclide analyses of till, Quat. Geochronol., 1, 2942.
  • Stoll, H. M., and D. P. Schrag (1996), Evidence for glacial control of rapid sea level changes in the early Cretaceous, Science, 272, 17711774.
  • Thomson, S. N., M. T. Brandon, P. W. Reiners, J. H. Tomkin, C. Vázquez, and N. J. Wilson (2010), Glaciation as a destructive and constructive control on mountain building, Nature, 467, 313317.
  • Turner, B. R., and D. Padley (1991), Lower Cretaceous coal-bearing sediments from Prydz Bay, East Antarctica, in Proceedings of the Ocean Drilling Program, Scientific Results, vol. 119, pp. 5760, Ocean Drill. Program, College Station, Tex.
  • van de Flierdt, T., S. R. Hemming, S. L. Goldstein, G. E. Gehrels, and S. E. Cox (2008), Evidence against a young volcanic origin of the Gamburtsev Subglacial Mountains, Antarctica, Geophys. Res. Lett., 35, L21303, doi:10.1029/2008GL035564.
  • Veevers, J. J. (1994), Case for the Gamburtsev Subglacial Mountains of East Antarctica originating by mid-Carboniferous shortening of an intracratonic basin, Geology, 22, 593596.
  • Veevers, J. J., A. Saeed, N. Pearson, E. Belousova, and D. Kinny (2008a), Zircons and clay from morainal Permian siltstone at Mt Rymill (73 degrees S, 66 degrees E), Prince Charles Mountains, Antarctica, reflect the ancestral Gamburtsev Subglacial Mountains-Vostok Subglacial Highlands Complex, Gondwana Res., 14, 343354.
  • Veevers, J. J., A. Saeed, and E. O'Brien (2008b), Provenance of the Gamburtsev Subglacial Mountains from U-Pb and Hf analysis of detrital zircons in Cretaceous to Quaternary sediments in Prydz Bay and beneath the Amery Ice Shelf, Sediment. Geol., 211, 1232.
  • Whipple, K. X. (2009), The influence of climate on the tectonic evolution of mountain belts, Nat. Geosci., 2, 97104.
  • Wolovick, M., N. Frearson, A. E. Block, R. E. Bell, M. Studinger, F. Ferraccioli, D. A. Braaten, and D. Damaske (2009), Preliminary analysis of the Gamburtsev Subglacial Mountains morphology from AGAP airborne radar data, Eos Trans. AGU, 90(52), Fall Meet. Suppl., Abstract C43A-0486.