Impacts of HOx regeneration and recycling in the oxidation of isoprene: Consequences for the composition of past, present and future atmospheres

Authors


Abstract

[1] A global chemistry-climate model is used to assess the impact on atmospheric composition of the regeneration and recycling of HOx in the photo-oxidation of isoprene. The impact is explored subject to present-day, pre-industrial and future climate/emission scenarios. Our calculations show that, in all cases, the inclusion of uni-molecular isomerisations of the isoprene hydroxy-peroxy radicals leads to enhanced production of HOx radicals and ozone. The global burden of ozone increases by 25–36 Tg (8–18%), depending on the climate/emissions scenario, whilst the changes in OH lead to decreases in the methane lifetime of between 11% in the future and 35% in the pre-industrial. Critically the size of the change in methane lifetime depends on the VOC/NOx emission ratio. The results of the present-day calculations suggest a certain amount of parameter refinement is still needed to reconcile the updated chemistry with field observations (particularly for HO2+RO2). However, the updated chemistry could have far-reaching implications for: future-climate predictions; projections of future oxidising capacity; and our understanding of past changes in oxidising capacity.

Ancillary