Detecting anthropogenic CO2 changes in the interior Atlantic Ocean between 1989 and 2005



[1] Repeat observations along the meridional Atlantic section A16 from Iceland to 56°S show substantial changes in the total dissolved inorganic carbon (DIC) concentrations in the ocean between occupations from 1989 through 2005. The changes correspond to the expected increase in DIC driven by the uptake of anthropogenic CO2 from the atmosphere, but the ΔDIC is more varied and larger, in some locations, than can be explained solely by this process. Concomitant large changes in oxygen (O2) suggest that processes acting on the natural carbon cycle also contribute to ΔDIC. Precise partial pressure of CO2 measurements suggest small but systematic increases in the bottom waters. To isolate the anthropogenic CO2 component (ΔCanthro) from ΔDIC, an extended multilinear regression approach is applied along isopycnal surfaces. This yields an average depth-integrated ΔCanthro of 0.53 ± 0.05 mol m−2 yr−1 with maximum values in the temperate zones of both hemispheres and a minimum in the tropical Atlantic. A higher decadal increase in the anthropogenic CO2 inventory is found for the South Atlantic compared to the North Atlantic. This anthropogenic CO2 accumulation pattern is opposite to that seen for the entire Anthropocene up to the 1990s. This change could perhaps be a consequence of the reduced downward transport of anthropogenic CO2 in the North Atlantic due to recent climate variability. Extrapolating the results for this section to the entire Atlantic basin (63°N to 56°S) yields an uptake of 5 ± 1 Pg C decade−1, which corresponds to about 25% of the annual global ocean uptake of anthropogenic CO2 during this period.