SEARCH

SEARCH BY CITATION

References

  • Ahmad, M. D., et al. (2006), Application of SEBAL approach and MODIS time-series to map vegetation water use patterns in the data scarce Krishna river basin of India, Water Sci. Technol., 53(10), 8390.
  • Allen, R. G. (2000), Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study, J. Hydrol., 229(1–2), 2741.
  • Allen, R. G., et al. (2007), Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)–Model, J. Irrig. Drain. Eng., 133(4), 380394.
  • Anderson, M. C., J. M. Norman, J. R. Mecikalski, J. A. Otkin, and W. P. Kustas (2007a), A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology, J. Geophys. Res., 112, D11112, doi:10.1029/2006JD007507.
  • Anderson, M. C., J. M. Norman, J. R. Mecikalski, J. A. Otkin, and W. P. Kustas (2007b), A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation, J. Geophys. Res., 112, D10117, doi:10.1029/2006JD007506.
  • Armstrong, R. N., et al. (2008), Evaluation of three evaporation estimation methods in a Canadian prairie landscape, Hydrol. Processes, 22(15), 28012815.
  • Arnold, J. G., et al. (1993), A comprehensive surface-groundwater flow model, J. Hydrol., 142(1–4), 4769.
  • Bastiaanssen, W. G. M. (2000), SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey, J. Hydrol., 229(1–2), 87100.
  • Bastiaanssen, W. G. M., et al. (1998a), A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation, J. Hydrol., 213(1–4), 198212.
  • Bastiaanssen, W. G. M., et al. (1998b), A remote sensing surface energy balance algorithm for land (SEBAL). 2. Validation, J. Hydrol., 213(1–4), 213229.
  • Bastiaanssen, W. G. M., M.-D. Ahmad, and Y. Chemin (2002), Satellite surveillance of evaporative depletion across the Indus Basin, Water Resour. Res., 38(12), 1273, doi:10.1029/2001WR000386.
  • Bastiaanssen, W. G. M., et al. (2005), SEBAL model with remotely sensed data to improve water-resources management under actual field conditions, J. Irrig. Drain. Eng., 131(1), 8593.
  • Batra, N., et al. (2006), Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the Southern Great Plains, Remote Sens. Environ., 103(1), 115.
  • Biftu, G. F., and T. Y. Gan (2000), Assessment of evapotranspiration models applied to a watershed of Canadian Prairies with mixed land-uses, Hydrol. Processes, 14(7), 13051325.
  • Bouchet, R. J. (1963), Evapotranspiration reelle et potentielle, signification climatique, IAHS Publ., 62, 134142.
  • Brutsaert, W. (1975), On a derivable formula for long-wave radiation from clear skies, Water Resour. Res., 11(5), 742744.
  • Brutsaert, W. (1982), Evaporation Into the Atmosphere: Theory, History, and Applications, D. Reidel, Boston, Mass.
  • Brutsaert, W., and M. B. Parlange (1998), Hydrologic cycle explains the evaporation paradox, Nature, 396(6706), 3030.
  • Chen, Y. M., et al. (1995), Main Crop Water Requirement and Irrigation in China, China Waterpower Press, Beijing.
  • Compaore, H., et al. (2008), Evaporation mapping at two scales using optical imagery in the White Volta basin, Upper East Ghana, Phys. Chem. Earth, 33(1–2), 127140.
  • Crago, R., and R. Crowley (2005), Complementary relationships for near-instantaneous evaporation, J. Hydrol., 300(1–4), 199211.
  • Droogers, P., and W. Bastiaanssen (2002), Irrigation performance using hydrological and remote sensing modeling, J. Irrig. Drain. Eng., 128(1), 1118.
  • Farah, H. O. (2000), Estimation of regional evaporation under all sky conditions with satellite and routine weather data, Ph.D. thesis, 200 pp., Wageningen Univ., Wageningen, Netherlands.
  • Farah, H. O., et al. (2004), Evaluation of the temporal variability of the evaporative fraction in a tropical watershed, Int. J. Appl. Earth Obs. Geoinf., 5, 129140.
  • Flerchinger, G. N., C. Hanson, and J. Wight (1996), Modeling evapotranspiration and surface energy budgets across a watershed, Water Resour. Res., 32(8), 25392548.
  • French, A. N., et al. (2005), Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA), Remote Sens. Environ., 99(1–2), 5565.
  • Gao, Y. C., and D. Long (2008), Intercomparison of remote sensing-based models for estimation of evapotranspiration and accuracy assessment based on SWAT, Hydrol. Processes, 22(25), 48504869.
  • Gao, Y. C., et al. (2008), Estimation of daily actual evapotranspiration from remotely sensed data under complex terrain over the upper Chao river basin in North China, Int. J. Remote Sens., 29(11), 32953315.
  • Granger, R. J. (1989), A complementary relationship approach for evaporation from nonsaturated surfaces, J. Hydrol., 111(1–4), 3138.
  • Granger, R. J. (1996), Summer energy balance at Wolf Creek Research Basin, Yukon, in Hydro-Ecology Workshop on the Arctic Environmental Strategy-Action of Water, edited by D. Milburn, pp. 325341, Can. Geophys. Union, Banff, Alberta, Canada.
  • Granger, R. J. (1998), Partitioning of energy during the snow-free season at the Wolf Creek Research Basin, in Proceedings of a Workshop Held in Whitehorse, edited by J. W. Pomeroy, and R. J. Granger, pp. 3343, Environ. Can. Natl. Water Res. Inst., Saskatoon, Sask., Canada.
  • Granger, R. J., and D. M. Gray (1989), Evaporation from natural nonsaturated surfaces, J. Hydrol., 111(1–4), 2129.
  • Hobbins, M. T., J. A. Ramírez, and T. C. Brown (2004), Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: Paradoxical or complementary? Geophys. Res. Lett., 31, L13503, doi:10.1029/2004GL019846.
  • Hong, S. H., et al. (2009), Up-scaling of SEBAL derived evapotranspiration maps from Landsat (30 m) to MODIS (250 m) scale, J. Hydrol., 370(1–4), 122138.
  • Immerzeel, W. W., and P. Droogers (2008), Calibration of a distributed hydrological model based on satellite evapotranspiration, J. Hydrol., 349(3–4), 411424.
  • Immerzeel, W. W., et al. (2008), Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment, Agric. Water Manage., 95(1), 1124.
  • Jiang, L., and S. Islam (2001), Estimation of surface evaporation map over Southern Great Plains using remote sensing data, Water Resour. Res., 37(2), 329340.
  • Kahler, D. M., and W. Brutsaert (2006), Complementary relationship between daily evaporation in the environment and pan evaporation, Water Resour. Res., 42, W05413, doi:10.1029/2005WR004541.
  • Kongo, V. M., and G. P. W. Jewitt (2006), Preliminary investigation of catchment hydrology in response to agricultural water use innovations: A case study of the Potshini catchment-South Africa, Phys. Chem. Earth, 31(15–16), 976987.
  • Krajewski, W. F., et al. (2006), A remote sensing observatory for hydrologic sciences: A genesis for scaling to continental hydrology, Water Resour. Res., 42, W07301, doi:10.1029/2005WR004435.
  • Kustas, W. P., et al. (2007), Utility of radiometric-aerodynamic temperature relations for heat flux estimation, Boundary Layer Meteorol., 122(1), 167187.
  • Li, H. J., et al. (2008), Estimation of water consumption and crop water productivity of winter wheat in North China Plain using remote sensing technology, Agric. Water Manage., 95(11), 12711278.
  • Liu, S. M., et al. (2006), Evaluation of three complementary relationship approaches for evapotranspiration over the Yellow River basin, Hydrol. Processes, 20(11), 23472361.
  • Long, D., Y. Gao, and V. P. Singh (2010), Estimation of daily average net radiation from MODIS data and DEM over the Baiyangdian watershed in North China for clear sky days, J. Hydrol., 388(3–4), 217233.
  • Lucht, W., et al. (2000), An algorithm for the retrieval of albedo from space using semiempirical BRDF models, IEEE Trans. Geosci. Remote Sens., 38(2), 977998.
  • Mohamed, Y. A., et al. (2004), Spatial variability of evaporation and moisture storage in the swamps of the upper Nile studied by remote sensing techniques, J. Hydrol., 289(1–4), 145164.
  • Mohamed, Y. A., et al. (2006), New lessons on the Sudd hydrology learned from remote sensing and climate modeling, Hydrol. Earth Syst. Sci., 10(4), 507518.
  • Morton, F. I. (1983), Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology, J. Hydrol., 66(1–4), 176.
  • Nishida, K., R. R. Nemani, S. W. Running, and J. M. Glassy (2003), An operational remote sensing algorithm of land surface evaporation, J. Geophys. Res., 108(D9), 4270, doi:10.1029/2002JD002062.
  • Norman, J. M., et al. (1995), Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface-temperature, Agric. For. Meteorol., 77(3–4), 263293.
  • Norman, J. M., M. C. Anderson, W. P. Kustas, A. N. French, J. Mecikalski, R. Torn, G. R. Diak, T. J. Schmugge, and B. C. W. Tanner (2003), Remote sensing of surface energy fluxes at 101-m pixel resolutions, Water Resour. Res., 39(8), 1221, doi:10.1029/2002WR001775.
  • Oberg, J. W., and A. M. Melesse (2006), Evapotranspiration dynamics at an ecohydrological restoration site: An energy balance and remote sensing approach, J. Am. Water Resour. Assoc., 42(3), 565582.
  • Qiu, X. F., et al. (2004), Estimation of annual actual evapotranspiration from nonsaturated land surfaces with conventional meteorological data, Sci. China, Ser. D: Earth Sci., 47(3), 239246.
  • Ramos, J. G., et al. (2009), Evaluation of satellite evapotranspiration estimates using ground-meteorological data available for the Flumen District into the Ebro Valley of N.E. Spain, Agric. Water Manage., 96(4), 638652.
  • Refsgaard, J. C. (1997), Parameterisation, calibration and validation of distributed hydrological models, J. Hydrol., 198(1–4), 6997.
  • Schuurmans, J. M., et al. (2003), Assimilation of remotely sensed latent heat flux in a distributed hydrological model, Adv. Water Resour., 26(2), 151159.
  • Singh, R. K., et al. (2008), Application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in south-central Nebraska, J. Irrig. Drain. Eng., 134(3), 273285.
  • Su, Z. (2002), The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrol. Earth Syst. Sci., 6(1), 8599.
  • Tasumi, M. (2003), Progress in operational estimation of regional evapotranspiration using satellite imagery, Ph.D. thesis, Univ. of Idaho, Moscow.
  • Teixeira, A. H. D. C., et al. (2009), Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle Sao Francisco River basin, Brazil: Part A: Calibration and validation, Agric. For. Meteorol., 149(3–4), 462476.
  • Timmermans, W. J., et al. (2007), An intercomparison of the surface energy balance algorithm for land (SEBAL) and the two-source energy balance (TSEB) modeling schemes, Remote Sens. Environ., 108(4), 369384.
  • Wang, K. C., P. Wang, Z. Li, M. Cribb, and M. Sparrow (2007), A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature, J. Geophys. Res., 112, D15107, doi:10.1029/2006JD008351.
  • Wu, W., et al. (2006), Spatial modeling of evapotranspiration in the Luquillo experimental forest of Puerto Rico using remotely-sensed data, J. Hydrol., 328(3–4), 733752.
  • Xu, C. Y., and V. P. Singh (2005), Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions, J. Hydrol., 308(1–4), 105121.
  • Xu, Z. X., and J. Y. Li (2003), A distributed approach for estimating catchment evapotranspiration: Comparison of the combination equation and the complementary relationship approaches, Hydrol. Processes, 17(8), 15091523.
  • Yang, D. W., F. Sun, Z. Liu, Z. Cong, and Z. Lei (2006), Interpreting the complementary relationship in non-humid environments based on the Budyko and Penman hypotheses, Geophys. Res. Lett., 33, L18402, doi:10.1029/2006GL027657.
  • Yu, J., et al. (2009), Validity of the Bouchet's complementary relationship at 102 observatories across China, Sci. China, Ser. D: Earth Sci., 52(5), 708713.
  • Zhang, R. H. (2009), Quantitative Thermal Infrared Remote Sensing and Its Ground Experimental Basis, 440 pp., Science, Beijing.