Extinction-to-backscatter ratios of Saharan dust layers derived from in situ measurements and CALIPSO overflights during NAMMA

Authors


  • 17 March 2009

Abstract

[1] We determine the extinction-to-backscatter (Sa) ratios of dust using (1) airborne in situ measurements of microphysical properties, (2) modeling studies, and (3) the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) observations recorded during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) field experiment conducted from Sal, Cape Verde during August to September 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a two-color method to determine the corresponding 1064 nm Sa. This method yielded dust Sa ratios of 39.8 ± 1.4 and 51.8 ± 3.6 sr at 532 and 1064 nm, respectively. Second, Sa at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 ± 3.5 and 50.0 ± 4 sr at 532 and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile and thus generate a stratified 532 nm Sa. This method yielded an Sa ratio at 532 nm of 35.7 sr in the dust layer and 25 sr in the marine boundary layer consistent with a predominantly sea-salt aerosol near the ocean surface. Combinatorial simulations using noisy size spectra and refractive indices were used to estimate the mean and uncertainty (one standard deviation) of these Sa ratios. These simulations produced a mean (± uncertainty) of 39.4 (±5.9) and 56.5 (±16.5) sr at 532 and 1064 nm, respectively, corresponding to percentage uncertainties of 15% and 29%. These results will provide a measurements-based estimate of the dust Sa for use in backscatter lidar inversion algorithms such as CALIOP (Cloud-Aerosol Lidar With Orthogonal Polarization).

Ancillary