• irrigation;
  • impact;
  • climate

[1] The effect of irrigation on regional climate has been studied over the years. However, in most studies, the model was usually set at coarse resolution, and the soil moisture was set to field capacity at each time step. We reinvestigated this issue over the Central Valley of California's agricultural area by: (1) using the regional climate model at different resolutions down to the finest resolution of 4 km for the most inner domain, covering California's Central Valley, the central coast, the Sierra Nevada Mountains, and water; (2) using a more realistic irrigation scheme in the model through the use of different allowable soil water depletion configurations; and (3) evaluating the simulated results against satellite and in situ observations available through the California Irrigation Management Information System (CIMIS). The simulation results with fine model resolution and with the more realistic irrigation scheme indicate that the surface meteorological fields are noticeably improved when compared with observations from the CIMIS network and Moderate Resolution Imaging Spectroradiometer data. Our results also indicate that irrigation has significant impacts on local meteorological fields by decreasing temperature by 3°–7°C and increasing relative humidity by 9–20%, depending on model resolutions and allowable soil water depletion configurations. More significantly, our results using the improved model show that the effects of irrigation on weather and climate do not extend very far into nonirrigated regions.