SEARCH

SEARCH BY CITATION

References

  • Al-Abadleh, H. A., and V. H. Grassian (2000), Heterogeneous reaction of NO2 on hexane soot: A Knudsen cell and FT-IR study, J. Phys. Chem. A, 104, 11,92611,933.
  • Andreae, M. O., and P. J. Crutzen (1997), Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry, Science, 276, 10521058.
  • Angelini, M. M., R. J. Garrard, S. J. Rosen, and R. Z. Hinrichs (2007), Heterogeneous reactions of HNO3 and NO2 on the clay minerals kaolinite and pyrophyllite, J. Phys. Chem. A, 111, 33263335.
  • Beichert, P., and B. J. Finlayson-Pitts (1996), Knudsen cell studies of the uptake of gaseous HNO3 and other oxides of nitrogen on solid NaCl: The role of surface-adsorbed water, J. Phys. Chem., 100, 15,21815,228.
  • Carlos-Cuellar, S., P. Li, A. P. Christensen, B. J. Krueger, C. Burrichter, and V. H. Grassian (2003), Heterogeneous uptake kinetics of volatile organic compounds on oxide surfaces using a Knudsen cell reactor: Adsorption of acetic acid, formaldehyde, and methanol on α-Fe2O3, α-Al2O3 and SiO2, J. Phys. Chem. A, 107, 42504261.
  • Chen, H. H., L. D. Kong, J. M. Chen, R. Y. Zhang, and L. Wang (2007), Heterogeneous uptake of carbonyl sulfide on hematite and hematite-NaCl mixtures, Environ. Sci. Technol., 41, 64846490.
  • Chin, M., and D. D. Davis (1995), A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol, J. Geophys. Res., 100(DS), 89939005.
  • Conrad, R. (1996), Soil microorganisms as controller of atmospheric trace gases (H2, CO, CH4, OCS, N2O and NO), Microbiol. Rev., 60(4), 609640.
  • Crutzen, P. J. (1976), The possible importance of CSO for the sulfate layer of the stratosphere, Geophys. Res. Lett., 3, 7376.
  • Dentener, F. J., G. R. Carmichael, Y. Zhang, J. Lelieveld, J., and P. J. Crutzen (1996), Role of mineral aerosol as a reactive surface in the global troposphere, J. Geophys. Res., 101, 22,86922,889.
  • de Reus, M., F. Denterner, A. Thomas, S. Borrmann, J. Ström, and J. Lelieveld (2000), Airborne observations of dust aerosol over the North Atlantic Ocean during ACE 2: Indications for heterogeneous ozone destruction, J. Geophys. Res., 105, 15,26315,275.
  • Frinak, E. K., S. J. Wermeille, C. D. Mashburn, M. A. Tolbert, and C. J. Pursell (2004), Heterogeneous reaction of gaseous nitric acid on γ–phase iron(III) oxide, J. Phys. Chem. A, 108, 15601566.
  • Gebel, M. E., and B. J. Finlayson-Pitts (2001), Uptake and reaction of ClONO2 on NaCl and synthetic sea salt, J. Phys. Chem. A, 105, 51785187.
  • Greshake, A., W. Klöck, P. Arndt, M. Maetz, G. J. Flynn, S. Bajt, and A. Bischoff (1998), Heating experiments simulating atmospheric entry heating of micrometeorites: clues to their parent body sources, Meteor. Planet Sci., 33, 267290.
  • Hanisch, F., and J. N. Crowley (2001), The heterogeneous reactivity of gaseous nitric acid on authentic mineral dust samples, and on individual mineral and clay mineral components, Phys. Chem. Chem. Phys., 3, 24742482.
  • Hatch, C. D., R. V. Gough, O. B. Toon, and M. A. Tolbert (2008), Heterogeneous nucleation of nitric acid trihydrate on clay minerals: Relevance to type Ia polar stratospheric clouds, J. Phys. Chem. B, 112, 612620.
  • He, H., J. F. Liu, Y. J. Mu, Y. B. Yu, and M. X. Chen (2005), Heterogeneous oxidation of carbonyl sulfide on atmospheric particles and alumina, Environ. Sci. Technol., 39, 96379642.
  • Hudson, P. K., J. E. Shilling, M. A. Torlbert, and O. B. Toon (2002), Uptake of nitric acid on ice at tropospheric temperatures: Implications for cirrus clouds, J. Phys. Chem. A, 106, 98749882.
  • Jacob, D. J. (2000), Heterogeneous chemistry and tropospheric ozone, Atmos. Environ., 34, 21312159.
  • Jayne, J. T., X. S. Duan, P. Davidovits, D. R. Worsnop, M. S. Zahniser, and C. E. Kolb (1991), Uptake of gas-phase alcohol and organic acid molecules by water surfaces, J. Phys. Chem., 95, 93296336.
  • Kesselmeier, J., N. Teusch, and U. Kuhn (1999), Controlling variables for the uptake of atmospheric carbonyl sulfide by soil, J. Geophys. Res., 104(D9), 11,57711,584.
  • Kettle, A. J., U. Kuhn, M. von Hobe, J. Kesselmeier, and M. O. Andreae (2002), Global budget of atmospheric carbonyl sulfide: Temporal and spatial variations of the dominant sources and sinks, J. Geophys. Res., 107(D22), 4658, doi:10.1029/2002JD002187.
  • Liu, J. F., Y. B. Yu, Y. J. Mu, and H. He (2006), Mechanism of heterogeneous oxidation of carbonyl sulfide on Al2O3: An in situ diffuse reflectance infrared Fourier transform spectroscopy investigation, J. Phys. Chem. B, 110, 32253230.
  • Liu, J. F., Y. J. Mu, C. M. Geng, Y. B. Yu, H. He, and Y. H. Zhang (2007) Uptake and conversion of carbonyl sulfide in a lawn soil, Atmos. Environ., 41, 56975706.
  • Liu, Y. C., and H. He (2008), Temperature dependence of heterogeneous reaction of carbonyl sulfide on magnesium oxide, J. Phys. Chem. A, 112, 28202826.
  • Liu, Y. C., and H. He (2009), Experimental and theoretical study of hydrogen thiocarbonate for heterogeneous reaction of carbonyl sulfide on magnesium oxide, J. Phys. Chem. A, 113, 33873394.
  • Liu, Y. C., H. He, W. Q. Xu, and Y. B. Yu (2007), Mechanism of heterogeneous reaction of carbonyl sulfide on magnesium oxide, J. Phys. Chem. A, 111, 43334339.
  • Liu, Y. C., H. He, and J. Y. Mu (2008), Heterogeneous reactivity of carbonyl sulfide on α-Al2O3 and γ-Al2O3, Atmos. Environ., 42, 960969.
  • Liu, Y. C., Q. X. Ma, and H. He (2009), Comparative study of effect of water on the heterogeneous reactions of carbonyl sulfide on the surface of α-Al2O3 and MgO, Atmos. Chem. Phys., 9, 62736286.
  • Parry, E. P. (1963), An infrared study of pyridine absorbed or acidic solids. Characterization of surface acidity, J. Catal., 2, 371379.
  • Seisel, S., Y. Lian, T. Keil, M. E. Trukhin, and R. Zellner (2004), Kinetics of the interaction of water vapour with mineral dust and soot surfaces at T = 298 K, Phys. Chem. Chem. Phys., 6, 19261932.
  • Seisel, S., A. Pashkova, Y. Lian, and R. Zellner (2005), Water uptake on mineral dust and soot: A fundamental view of the hydrophilicity of atmospheric particles? Faraday Discuss., 130, 437451.
  • Simmons, J. S., L. Klemedtsson, H. Hultberg, and M. E. Kines (1999), Consumption of atmospheric carbonyl sulfide by coniferous boreal forest soils, J. Geophys. Res., 104(D9), 11,56911,576.
  • Smith, I. W. M. (2003), Laboratory studies of atmospheric reactions at low temperatures, Chem. Rev., 103, 45494564.
  • Tabor, K., L. Gutzwiller, and M. J. Rossi (1994), Heterogeneous chemical kinetics of NO2 on amorphous carbon at ambient temperature, J. Phys. Chem. A, 98, 61726186.
  • Turco, R. P., R. C. Whitten, O. B. Toon, J. B. Pollack, and P. Hamill (1980), OCS, stratospheric aerosols and climate, Nature, 283, 283286.
  • Ullerstam, M., M. S. Johnson, R. Vogt, and E. Ljungström (2003), DRIFTS and Knudsen cell study of the heterogeneous reactivity of SO2 and NO2 on mineral dust, Atmos. Chem. Phys., 3, 20432051.
  • Underwood, G. M., P. Li, C. R. Usher, and V. H. Grassian (2000), Determining accurate kinetic parameters of potentially important heterogeneous atmospheric reactions on solid particle surfaces with a Knudsen cell reactor, J. Phys. Chem. A, 104, 819829.
  • Underwood, G. M., P. Li, H. A. Al-Abadleh, and V. H. Grassian (2001), A Knudsen cell study of the heterogeneous reactivity of nitric acid on oxide and mineral dust particles, J. Phys. Chem. A, 105, 66096620.
  • Usher, C. R., A. E. Michel, and V. H. Grassian (2003), Reactions on mineral dust, Chem. Rev., 103, 48834939.
  • Watts, S. F. (2000), The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide, Atmos. Environ., 34, 761799.
  • Wu, H. B., X. Wang, J. M. Cheng, H. K. Yu, H. X. Xue, X. X. Pan, and F. Q. Hou (2004), Mechanism of the heterogeneous reaction of carbonyl sulfide with typical components of atmospheric aerosol, Chin. Sci. Bull., 49, 739743.
  • Wu, H. B., X. Wang, and J. M. Cheng (2005), Photooxidation of carbonyl sulfide in the presence of the typical oxides in atmospheric aerosol, Sci. China. Ser. B Chem., 48, 3137.
  • Yi, Z. G., X. M. Wang, G. Y. Sheng, D. Q. Zhang, G. Y. Zhou, and J. M. Fu (2007), Soil uptake of carbonyl sulfide in subtropical forests with different successional stages in south China, J. Geophys. Res., 112, D08302, doi:10.1029/2006JD008048.