SEARCH

SEARCH BY CITATION

Keywords:

  • Moon;
  • remote sensing;
  • spectroscopy

[1] The Moon Mineralogy Mapper (M3) provided the first global hyperspectral data of the lunar surface in 85 bands from 460 to 2980 nm. The Clementine mission provided the first global multispectral maps the lunar surface in 11 spectral bands across the ultraviolet-visible (UV-VIS) and near-infrared (NIR). In an effort to understand how M3 improves our ability to analyze and interpret lunar data, we compare M3 spectra with those from Clementine's UV-VIS and NIR cameras. The Clementine mission provided the first global multispectral maps the lunar surface in 11 spectral bands across the UV-VIS and NIR. We have found that M3 reflectance values are lower across all wavelengths compared with albedos from both of Clementine's UV-VIS and NIR cameras. M3 spectra show the Moon to be redder, that is, have a steeper continuum slope, than indicated by Clementine. The 1 μm absorption band depths may be comparable between the instruments, but Clementine data consistently exhibit shallower 2 μm band depths than M3. Absorption band minimums are difficult to compare due to the significantly different spectral resolutions.