SEARCH

SEARCH BY CITATION

References

  • Arora, V., and G. J. Boer (2005), Fire as an interactive component of dynamic vegetation models, J. Geophys. Res., 110, G02008, doi:10.1029/2005JG000042.
  • Balshi, M. S., et al. (2007), The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis, J. Geophys. Res., 112, G02029, doi:10.1029/2006JG000380.
  • Balshi, M. S., A. D. McGuire, P. Duffy, D. W. Kicklighter, and J. Melillo (2009a), Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century, Global Change Biol., 15, 14911510, doi:10.1111/j.1365-2486.2009.01877.x.
  • Balshi, M. S., A. D. McGuire, P. Duffy, M. Flannigan, J. Walsh, and J. Melillo (2009b), Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach, Global Change Biol., 15, 578600, doi:10.1111/j.1365-2486.2008.01679.x.
  • Bessie, W. C., and E. A. Johnson (1995), The relative importance of fuels and weather on fire behavior in subalpine forests, Ecology, 76, 747762.
  • Bisbee, K. E., S. T. Gower, J. M. Norman, and E. V. Nordheim (2001), Environmental controls on ground cover species composition and productivity in a boreal black spruce forest, Oecologia, 129, 261270.
  • Bond-Lamberty, B., S. D. Peckham, D. E. Ahl, and S. T. Gower (2007), Fire as the dominant driver of central Canadian boreal forest carbon balance, Nature, 450, 8992.
  • Burn, C. R. (1998), The response (1958–1997) of permafrost and near-surface ground temperatures to forest fire, Takhini River valley, southern Yukon Territory, Can. J. Earth Sci., 35, 184199.
  • Carrasco, J. J., J. C. Neff, and J. Harden (2006), Modeling physical and biogeochemical controls over carbon accumulation in a boreal forest soil, J. Geophys. Res., 111, G02004, doi:10.1029/2005JG000087.
  • Chen, W., J. Chen, D. Price, and J. Cihlar (2002), Effects of stand age on net primary productivity of boreal black spruce forests in Ontario, Canada, Can. J. For. Res., 32, 833842.
  • Clein, J. S., A. D. McGuire, X. Zhang, D. Kicklighter, J. Melillo, S. C. Wofsy, P. G. Jarvis, and J. M. Massheder (2002), Historical and projected carbon balance of mature black spruce ecosystems across North-America: The role of carbon-nitrogen interactions, Plant Soil, 242, 1532.
  • Cumming, S. G. (2001), Forest type and wildfire in the Alberta boreal mixedwood: What do fires burn? Ecol. Appl., 11, 97110.
  • Davidson, E. A., and I. A. Janssens (2006), Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, 440, 165173.
  • Dunn, A. L., C. C. Barford, S. C. Wofsy, M. L. Goulden, and B. C. Daube (2007), A long-term record of carbon exchange in a boreal black spruce forest: Means, responses to interannual variability, and decadal trends, Global Change Biol., 13, 577590.
  • Euskirchen, S. E., et al. (2006), Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems, Global Change Biol., 12, 731750.
  • Euskirchen, S. E., A. D. McGuire, and F. S. Chapin III (2007), Energy feedbacks of northern high-latitude ecosystems to the climate system due to reduced snow cover during 20th century warming, Global Change Biol., 13, 24252438.
  • Fan, Z., J. C. Neff, J. W. Harden, and K. P. Wickland (2008), Boreal soil carbon dynamics under a changing climate: A model inversion approach, J. Geophys. Res., 113, G04016, doi:10.1029/2008JG000723.
  • Flannigan, M., K. A. Logan, B. D. Amiro, W. R. Skinner, and B. J. Stocks (2005), Future area burned in Canada, Clim. Change, 77, 116.
  • French, N. H. F., E. S. Kasischke, and D. G. Williams (2002), Variability in the emission of carbon-based trace gases from wildfire in the Alaskan boreal forest, J. Geophys. Res., 107, 8151, doi:10.1029/2001JD000480 [printed 108(D1), 2003].
  • Frolking, S., N. T. Roulet, T. R. Moore, P. J. Richard, M. Lavoie, and S. D. Muller (2001), Modeling northern peatland decomposition and peat accumulation, Ecosystems, 4, 479498.
  • Funk, D. W., E. R. Pullman, K. M. Peterson, C. M. Patrick, and W. D. Billings (1994), Influence of water table on carbon dioxide, carbon monoxide, and methane fluxes from taiga bog microcosms, Global Biogeochem. Cycles, 8, 271278.
  • Gillett, N. P., A. J. Weaver, F. W. Zwiers, and M. D. Flannigan (2004), Detecting the effect of climate change on Canadian forest fires, Geophys. Res. Lett., 31, L18211, doi:10.1029/2004GL020876.
  • Goulden, M. L., A. M. S. McMillan, G. C. Winston, A. V. Rocha, K. L. Manies, J. W. Harden, and B. P. Bond-Lamberty (2010), Patterns of NPP, GPP, respiration, and NEP during boreal forest succession, Global Change Biol., doi:10.1111/j.1365-2486.2010.02274.x, in press.
  • Gower, S. T., R. E. McMurtrie, and D. Murty (1996), Aboveground net primary production decline with stand age: Potential causes, Trends Ecol. Evol., 11, 378382.
  • Gower, S. T., J. G. Vogel, J. M. Norman, C. J. Kucharik, P. L. Steele, and T. K. Stow (1997), Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada, J. Geophys. Res., 102(D24), 29,02929,041.
  • Grant, R. F. (2004), Modeling topographic effects on net ecosystem productivity of boreal black spruce forests, Tree Physiol., 24, 118.
  • Harden, J., S. E. Trumbore, B. J. Stocks, A. I. Hirsch, S. T. Gower, K. P. O. Neill, and E. Kasischke (2000), The role of fire in the boreal carbon budget, Global Change Biol., 6, suppl. 1, 174184.
  • Harden, J. W., R. Meier, C. Darnel, D. K. Swanson, and A. D. McGuire (2003), Soil drainage and its potential for influencing wildfire in Alaska, in Studies in Alaska by the U.S. Geological Survey, edited by J. Galloway, U.S. Geol. Surv. Prof. Pap., 1678.
  • Harden, J., J. C. Neff, D. V. Sandberg, M. R. Turetsky, R. D. Ottmar, G. Gleixner, T. Fries, and K. L. Manies (2004), Chemistry of burning the forest floor during the FROSTFIRE experimental burn, interior Alaska, 1999, Global Biogeochem. Cycles, 18, GB3014, doi:10.1029/2003GB002194.
  • Harden, J. W., K. L. Manies, J. C. Neff, and M. R. Turetsky (2006), Effects of wildfire and permafrost on soil organic matter and soil climate in interior Alaska, Global Change Biol., 12, 113, doi:10.1111/j.1365-2486.2006.01255.x.
  • Hayes, D. J., A. D. McGuire, D. W. Kicklighter, T. J. Burnside, and J. M. Melillo (2010), The effects of land cover and land use change on the contemporary carbon balance of the arctic and boreal ecosystems of northern Eurasia, in Arctic Land Cover and Land Use in a Changing Climate, edited by G. Gutman, chap. 5, Springer, New York, in press.
  • Jobbagy, E. G., and R. B. Jackson (2000), The vertical distribution of soil organic carbon and its relation to climate and vegetation, Ecol. Appl., 10, 423436.
  • Johnstone, J. F. (2006), Response of boreal plant communities to variations in previous fire-free interval, Int. J. Wildland Fire, 15, 497508.
  • Johnstone, J. F., and S. F. Chapin (2006), Effects of soil burn severity on post-fire tree recruitment in boreal forest, Ecosystems, 9, 1431.
  • Johnstone, J. F., and E. Kasischke (2005), Stand-level effects of soil burn severity on postfire regeneration in a recently burned black spruce forest, Can. J. For. Res., 35, 21512163.
  • Kanamitsu, M., et al. (2002), NCEP-DOE AMIP-II Reanalysis (R-2), Bull. Am. Meteorol. Soc., 83, 16311643.
  • Kane, E. S., E. S. Kasischke, D. W. Valentine, M. R. Turetsky, and A. D. McGuire (2007), Topographic influences on wildfire consumption of soil organic carbon in interior Alaska: Implications for black carbon accumulation, J. Geophys. Res., 112, G03017, doi:10.1029/2007JG000458.
  • Karunaratne, K. C., and C. R. Burn (2004), Relations between air and surface temperature in discontinuous permafrost terrain near Nayo, Yukon Territory, Can. J. Earth Sci., 41, 14371451.
  • Kasischke, E. S., and J. F. Johnstone (2005), Variation in postfire organic layer thickness in a black spruce forest complex in interior Alaska and its effects on soil temperature and moisture, Can. J. For. Res., 35, 21642177.
  • Kasischke, E. S., and M. R. Turetsky (2006), Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska, Geophys. Res. Lett., 33, L09703, doi:10.1029/2006GL025677.
  • Kasischke, E. S., E. J. Hyer, P. C. Novelli, L. P. Bruhwiler, N. H. F. French, A. I. Sukhinin, B. Hewitson, and B. J. Stocks (2005), Influences of boreal fire emissions on northern hemisphere atmospheric carbon and carbon monoxide, Global Biogeochem. Cycles, 19, GB1012, doi:10.1029/2004GB002300.
  • Kasischke, E. S., T. S. Rupp, and D. L. Verbyla (2006), Fire trends in the Alaskan boreal forest, in Alaska's Changing Boreal Forest, edited by F. S. Chapin III et al., pp. 285301, Oxford Univ. Press, New York.
  • Kasischke, E. S., et al. (2010), Alaska's changing fire regime—Implications for the vulnerability of its boreal forests, Can. J. For. Res., 40(7), 13131324.
  • Keeling, C. D., and T. P. Whorf (2005), Atmospheric CO2 records from sites in the SIO air sampling network, in Trends: A Compendium of Data on Global Change, Carbon Dioxide Inf. and Anal. Cent., Oak Ridge Natl. Lab., U.S. Dep. of Energy, Oak Ridge, Tenn.,
  • Klene, A. E., F. E. Nelson, and N. I. Shiklomanov (2001), The n-factor as a tool in geocryological mapping: Seasonal thaw in the Kuparuk River basin, Alaska, Phys. Geogr., 22, 449466.
  • Lawrence, D. M., and A. G. Slater (2008), Incorporating organic soil into a global climate model, Clim. Dyn., doi:10.1007/s00382-007-0278-1.
  • Liljedahl, A., L. D. Hinzman, R. Busey, and K. Yoshikawa (2007), Physical short-term changes after a tussock tundra fire, Seward Peninsula, Alaska, J. Geophys. Res., 112, F02S07, doi:10.1029/2006JF000554.
  • Liu, H., and J. T. Randerson (2008), Interannual variability of surface energy exchange depends on stand age in a boreal forest fire chronosequence, J. Geophys. Res., 113, G01006, doi:10.1029/2007JG000483.
  • Liu, H., J. T. Randerson, J. Lindfors, and F. S. Chapin III (2005), Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: An annual perspective, J. Geophys. Res., 110, D13101, doi:10.1029/2004JD005158.
  • Mack, M., K. K. Treseder, K. L. Manies, J. Harden, A. G. Schuur, J. G. Vogel, J. T. Randerson, and S. F. Chapin (2008), Recovery of aboveground plant biomass and productivity after fire in mesic and dry black spruce forests of interior Alaska, Ecosystems, doi:10.1007/s10021-007-9117-9.
  • MacKay, J. R. (1995), Active layer changes (1968 to 1993) following the forest-tundra fire near Inuvik, N.W.T., Canada, Arct. Alp. Res., 27, 323336.
  • Manies, K. L., J. Harden, B. Bond-Lamberty, and K. P. O'Neill (2005), Woody debris along an upland chronosequence in boreal Manitoba and its impact on long-term carbon storage, Can. J. For. Res., 35, 472482.
  • Manies, K. L., J. W. Harden, and H. Veldhuis (2006), Soil data from a moderately well and somewhat poorly drained fire chronosequence near Thompson, Manitoba, Canada, U.S. Geol. Surv. Open File Rep., 2006-1291, 17 pp.
  • McGuire, A. D., J. Melillo, E. G. Jobbagy, D. Kicklighter, A. L. Grace, B. Moore, and C. J. Vorosmarty (1992), Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America, Global Biogeochem. Cycles, 6, 101124.
  • McGuire, A. D., L. G. Anderson, T. R. Christensen, S. Dallimore, L. Guo, D. J. Hayes, M. Heimann, T. D. Lorenson, R. W. Macdonald, and N. Roulet (2009), Sensitivity of the carbon cycle in the Arctic to climate change, Ecol. Monogr., 79, 523555.
  • Melillo, J. M., A. D. McGuire, D. W. Kicklighter, B. Moore III, C. J. Vorosmarty, and A. L. Schloss (1993), Global climate change and terrestrial net primary production, Nature, 63, 234240.
  • Mitchell, T. D., and P. D. Jones (2005), An improved method of constructing a database of monthly climate observations and associated high-resolution grids, Int. J. Climatol., 25, 693712.
  • O'Connell, K. B., S. T. Gower, and J. M. Norman (2003), Net ecosystem production of two contrasting boreal black spruce forest communities, Ecosystems, 6, 248260.
  • O'Neill, K. P., E. Kasischke, and D. D. Richter (2002), Environmental controls on soil CO2 flux following fire in black spruce, white spruce, and aspen stands of interior Alaska, Can. J. For. Res., 32, 15251541.
  • Parton, W. J., D. Schimel, V. C. Cole, and D. Ojima (1987), Analysis of factors controlling soil organic levels of grasslands in the Great Plains, Soil Sci. Soc. Am. J., 51, 11731179.
  • Prescott, C. E., D. G. Maynard, and R. Laiho (2000), Humus in northern forests: Friend or foe? For. Ecol. Manage., 133, 2336.
  • Raich, J. W., E. B. Rastetter, J. Melillo, D. Kicklighter, P. A. Steudler, B. J. Peterson, A. L. Grace, B. Moore, and C. J. Vorosmarty (1991), Potential net primary productivity in South America: Application of a global model, Ecol. Appl., 1, 399429.
  • Rastetter, E. B., A. W. King, B. J. Cosby, G. M. Hornberger, R. V. O'Neill, and J. E. Hobbie (1992), Aggregating fine-scale ecological knowledge to model coarser-scale attributes of ecosystems, Ecol. Appl., 2, 5570.
  • Renkin, R. A., and D. G. Despain (1992), Fuel moisture, forest type, and lightning-caused fire in Yellowstone National Park, Can. J. For. Res., 22, 3745.
  • Ruess, R. W., R. L. Hendrick, A. J. Burton, K. S. Pregitzer, B. Sveinbjornsson, M. F. Allen, and G. E. Maurer (2003), Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of Interior Alaska, Ecol. Monogr., 73, 643662.
  • Schuur, E. A. G., et al. (2008), Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle, BioScience, 58, 701714.
  • Simard, M., N. Lecomte, Y. Bergeron, P. Y. Bernier, and D. Pare (2007), Forest productivity decline caused by successional paludification of boreal soils, Ecol. Appl., 17, 16191673.
  • Steele, S. J., S. T. Gower, J. G. Vogel, and J. M. Norman (1997), Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada, Tree Physiol., 17, 577587.
  • Tarnocai, C., J. G. Canadell, G. Mazhitova, E. A. G. Schuur, P. Kuhry, and S. Zimov (2009), Soil organic carbon pools in the northern circumpolar permafrost region, Global Biogeochem. Cycles, 23, GB2023, doi:10.1029/2008GB003327.
  • Thonicke, K., S. Venevsky, S. Sitch, and W. Cramer (2001), The role of fire disturbance for global vegetation dynamics: Coupling fire into a Dynamic Global Vegetation Model, Glob. Ecol. Biogeogr., 10, 661677.
  • Tian, H., J. M. Melillo, D. W. Kicklighter, A. D. McGuire, and J. Helfrich (1999), The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States, Tellus, Ser. B, 51, 414452.
  • Van Cleve, K., C. T. Dyrness, L. A. Viereck, J. Fox, F. S. Chapin III, and W. Oechel (1983), Taiga ecosystem in interior Alaska, BioScience, 33, 3944.
  • Viereck, L. A., and W. F. Johnston (1990), Black spruce, in Silvics of North America, vol. 1, Conifers, edited by R. M. Burns, and B. H. Honkala, pp. 227237, For. Serv., U.S. Dep. of Agric., Washington, D. C.,
  • Vogel, J. G., B. Bond-Lamberty, A. G. Schuur, S. T. Gower, M. Mack, K. B. O. Connell, D. W. Valentine, and R. W. Ruess (2008), Carbon allocation in boreal black spruce forests across regions varying in soil temperature and precipitation, Global Change Biol., 14, 15031516.
  • Yi, S., A. M. Arain, and M.-K. Woo (2006), Modifications of a land surface scheme for improved simulation of ground freeze-thaw in northern environments, Geophys. Res. Lett., 33, L13501, doi:10.1029/2006GL026340.
  • Yi, S., et al. (2009a), Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance, J. Geophys. Res., 114, G02015, doi:10.1029/2008JG000841.
  • Yi, S., K. Manies, J. Harden, and A. D. McGuire (2009b), Characteristics of organic soil in black spruce forests: Implications for the application of land surface and ecosystem models in cold regions, Geophys. Res. Lett., 36, L05501, doi:10.1029/2008GL037014.
  • Zhang, Y., W. Chen, and J. Cihlar (2003), A process-based model for quantifying the impact of climate change on permafrost thermal regimes, J. Geophys. Res., 108(D22), 4695, doi:10.1029/2002JD003354.
  • Zhuang, Q., V. E. Romanovsky, and A. D. McGuire (2001), Incorporation of a permafrost model into a large-scale ecosystem model: Evaluation of temporal and spatial scaling issues in simulating soil thermal dynamics, J. Geophys. Res., 106, 33,64933,670.
  • Zhuang, Q., A. D. McGuire, K. P. O'Neill, J. W. Harden, V. E. Romanovsky, and J. Yarie (2002), Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska, J. Geophys. Res., 107, 8147, doi:10.1029/2001JD001244 [printed 108(D1), 2003].
  • Zhuang, Q., et al. (2003), Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th century: A modeling analysis of the influences of soil thermal dynamics, Tellus, Ser. B, 55, 751776.
  • Zimov, S. A., S. P. Davidov, G. M. Zimova, A. I. Davidova, F. S. Chapin, M. C. Chapin, and J. F. Reynolds (1999), Contribution of disturbance to increasing seasonal amplitude of atmospheric CO2, Science, 284, 19731976.