SEARCH

SEARCH BY CITATION

References

  • Amthor, J. S. (2000), The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later, Ann. Bot., 86, 120.
  • Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell (2000), Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, 408, 184187.
  • Curtis, P. S., C. S. Vogel, C. M. Gough, H. P. Schmid, H. B. Su, and B. D. Bovard (2005), Respiratory carbon losses and the carbon-use efficiency of a northern hardwood forest, 1999–2003, New Phytol., 167, 437455.
  • DeLucia, E. H., J. E. Drake, R. B. Thomas, and M. Gonzalez-Meler (2007), Forest carbon use efficiency: Is respiration a constant fraction of gross primary production? Global Change Biol., 13, 11571167.
  • Enquist, B. J., and K. J. Niklas (2002), Global allocation rules for patterns of biomass partitioning in seed plants, Science, 295, 15171520.
  • Friedlingstein, P., G. Joel, C. B. Field, and I. Y. Fung (1999), Toward an allocation scheme for global terrestrial carbon models, Global Change Biol., 5, 755770.
  • Gifford, R. M. (2003), Plant respiration in productivity models: Conceptualisation, representation and issues for global terrestrial carbon-cycle research, Funct. Plant Biol., 30, 171186.
  • Hansen, M., R. DeFries, J. R. G. Townshend, and R. Sohlberg (1998), UMD global land cover classification, 1 kilometer, 1.0, Dep. of Geogr., Univ. of Md., College Park. (Available at http://www.landcover.org/).
  • Ise, T., and H. Sato (2008), Representing subgrid-scale edaphic heterogeneity in a large-scale ecosystem model: A case study in the circumpolar boreal regions, Geophys. Res. Lett., 35, L20407, doi:10.1029/2008GL035701.
  • Ito, A. (2005), Climate-related uncertainties in projections of the twenty-first century terrestrial carbon budget: Off-line model experiments using IPCC greenhouse-gas scenarios and AOGCM climate projections, Clim. Dyn., 24, 435448.
  • Ito, A., and T. Oikawa (2002), A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): A description based on dry-matter production theory and plot-scale validation, Ecol. Modell., 151, 143176.
  • Iwasa, Y., and J. Roughgarden (1984), Shoot root balance of plants—Optimal-growth of a system with many vegetative organs, Theor. Popul. Biol., 25, 78105.
  • Johnson, I. R., and J. H. M. Thornley (1987), A model of shoot-root partitioning with optimal-growth, Ann. Bot., 60, 133142.
  • Kashian, D. M., W. H. Romme, D. B. Tinker, M. G. Turner, and M. G. Ryan (2006), Carbon storage on landscapes with stand-replacing fires, BioScience, 56, 598606.
  • Kawamiya, M., C. Yoshikawa, T. Kato, H. Sato, K. Sudo, S. Watanabe, and T. Matsuno (2005), Development of an integrated earth system model on the Earth Simulator, J. Earth Simulator, 4, 1830.
  • Knyazikhin, Y., J. V. Martonchik, R. B. Myneni, D. J. Diner, and S. W. Running (1998), Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data, J. Geophys. Res., 103, 32,25732,275.
  • Knyazikhin, Y., et al. (1999), MODIS leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR) product (MOD15) algorithm, theoretical basis document, NASA Goddard Space Flight Cent., Greenbelt, Md.,
  • Litton, C. M., and C. P. Giardina (2008), Below-ground carbon flux and partitioning: Global patterns and response to temperature, Funct. Ecol., 22, 941954.
  • Litton, C. M., J. W. Raich, and M. G. Ryan (2007), Carbon allocation in forest ecosystems, Global Change Biol., 13, 20892109.
  • Luyssaert, S., et al. (2007), CO2 balance of boreal, temperate, and tropical forests derived from a global database, Global Change Biol., 13, 25092537.
  • Makela, A., and H. T. Valentine (2001), The ratio of NPP to GPP: Evidence of change over the course of stand development, Tree Physiol., 21, 10151030.
  • Malhi, Y., D. D. Baldocchi, and P. G. Jarvis (1999), The carbon balance of tropical, temperate and boreal forests, Plant Cell Environ., 22, 715740.
  • Moorcroft, P. R. (2006), How close are we to a predictive science of the biosphere? Trends Ecol. Evol., 21, 400407.
  • New, M., M. Hulme, and P. D. Jones (2000), Global 30-year mean monthly climatology, 1961–1990 data set, Distributed Active Arch. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn. (Available at http://www.daac.ornl.gov).
  • Prentice, I. C., G. D. Farquhar, M. J. R. Fasham, M. L. Goulden, M. Heimann, V. J. Jaramillo, H. S. Kheshgi, C. Le Quéré, R. J. Scholes, and D. W. R. Wallace (2001), The carbon cycle and atmospheric carbon dioxide, in Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., pp. 99181, Cambridge Univ. Press, New York.
  • Reynolds, J. F., and J. L. Chen (1996), Modelling whole-plant allocation in relation to carbon and nitrogen supply: Coordination versus optimization: Opinion, Plant Soil, 185, 6574.
  • Running, S. W., and J. C. Coughlan (1988), A general model of forest ecosystem processes for regional applications I. hydrologic balance, canopy gas exchange and primary production processes, Ecol. Modell., 42, 125154.
  • Running, S. W., and S. T. Gower (1991), FOREST-BGC, a general-model of forest ecosystem processes for regional applications 2. Dynamic carbon allocation and nitrogen budgets, Tree Physiol., 9, 147160.
  • Running, S. W., and E. R. Hunt Jr. (1993), Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models, in Scaling Physiological Processes: Leaf to Globe, edited by J. R. Ehleringer, and C. B. Field, pp. 141158, Academic, New York.
  • Running, S. W., R. R. Nemani, F. A. Heinsch, M. S. Zhao, M. Reeves, and H. Hashimoto (2004), A continuous satellite-derived measure of global terrestrial primary production, BioScience, 54, 547560.
  • Ryan, M. G. (1990), Growth and maintenance respiration in stems of Pinus contorta and Picea Engelmannii, Can. J. For. Res., 20, 4857.
  • Ryan, M. G. (1991), A simple method for estimating gross carbon budgets for vegetation in forest ecosystems, Tree Physiol., 9, 255266.
  • Ryan, M. G., R. M. Hubbard, S. Pongracic, R. J. Raison, and R. E. McMurtrie (1996), Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status, Tree Physiol., 16, 333343.
  • Ryan, M. G., M. B. Lavigne, and S. T. Gower (1997), Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate, J. Geophys. Res., 102, 28,87128,883.
  • Ryan, M. G., D. Binkley, J. H. Fownes, C. P. Giardina, and R. S. Senock (2004), An experimental test of the causes of forest growth decline with stand age, Ecol. Monogr., 74, 393414.
  • Turner, D. P., et al. (2006), Evaluation of MODIS NPP and GPP products across multiple biomes, Remote Sens. Environ., 102, 282292.
  • Waring, R. H., J. J. Landsberg, and M. Williams (1998), Net primary production of forests: A constant fraction of gross primary production? Tree Physiol., 18, 129134.
  • White, M. A., P. E. Thornton, S. W. Running, and R. R. Nemani (2000), Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: Net primary production controls, Earth Interact., 4, 185.
  • Zhang, Y. J., M. Xu, H. Chen, and J. Adams (2009), Global pattern of NPP to GPP ratio derived from MODIS data: Effects of ecosystem type, geographical location and climate, Glob. Ecol. Biogeogr., 18, 280290.
  • Zhao, M. S., F. A. Heinsch, R. R. Nemani, and S. W. Running (2005), Improvements of the MODIS terrestrial gross and net primary production global data set, Remote Sens. Environ., 95, 164176.