SEARCH

SEARCH BY CITATION

References

  • Adamson, J. K., and J. Kahl (2003), Changes in vegetation at Moor House within sheep exclosure plots established between 1953 and 1972, Rep. CEH Project C00162, Centre for Ecology and Hydrology, Lancaster.
  • Allen, S. E. (1964), Chemical aspects of heather burning, J. Appl. Ecol., 1, 347367.
  • Archer, D., and D. Stewart (1995), The installation and use of a snow pillow to monitor snow water equivalent, J. Chart. Inst. Water Environ. Manage., 9(3), 221230.
  • Bartlett, R. J., and D. S. Ross (1988), Colorimetric determination of oxidizable carbon in acid soil solutions, Soil Sci. Soc. Am. J., 52(4), 11911192.
  • Billett, M. F., et al. (2010), Carbon balance of UK peatlands: Current state of knowledge and future research challenges, Clim. Res., doi:10.3354/cr00903, in press.
  • Bond-Lamberty, B., C. K. Wang, and S. T. Gower (2004), Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence, Global Change Biol., 10(4), 473487.
  • Bubier, J. L., P. M. Crill, T. R. Moore, K. Savage, and R. K. Varner (1998), Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex, Global Biogeochem. Cycles, 12(4), 703714, doi:10.1029/98GB02426.
  • Burt, T. P., J. K. Adamson, and A. M. J. Lane (1998), Long-term rainfall and streamflow records for north central England: Putting the Environmental Change Network site at Moor House, Upper Teesdale, in context, Hydrol. Sci. J., 43(5), 775787.
  • Christensen, T. R., S. Jonasson, A. Michelsen, T. V. Callaghan, and M. Havstrom (1998), Environmental controls on soil respiration in the Eurasian and Greenlandic Arctic, J. Geophys. Res., 103(D22), 29,01529,021, doi:10.1029/98JD00084.
  • Clay, G. D., and F. Worrall (2010), Charcoal production in a UK moorland wildfire—How important is it? J. Environ. Manage., doi:10.1016/j.jenvman.2010.10.006, in press.
  • Clay, G. D., F. Worrall, and E. D. G. Fraser (2009a), Effects of managed burning upon dissolved organic carbon (DOC) in soil water and runoff water following a managed burn of a UK blanket bog, J. Hydrol., 367(1–2), 4151.
  • Clay, G. D., F. Worrall, E. Clark, and E. D. G. Fraser (2009b), Hydrological responses to managed burning and grazing in an upland blanket bog, J. Hydrol., 376(3–4), 486495.
  • Clay, G. D., F. Worrall, and E. D. G. Fraser (2010), Compositional changes in soil water and runoff water following managed burning on a UK upland blanket bog, J. Hydrol., 380(1–2), 135145.
  • Clement, S. (2005), The future stability of upland blanket peat following historical erosion and recent re-vegetation, Ph.D. thesis, Univ. of Durham, Durham, NC.,
  • Dorrepaal, E., S. Toet, R. S. P. van Logtestijn, E. Swart, M. J. van de Weg, T. V. Callaghan, and R. Aerts (2009), Carbon respiration from subsurface peat accelerated by climate warming in the subarctic, Nature, 460(7255), 616619.
  • Ellis, T., P. W. Hill, N. Fenner, G. G. Williams, D. Godbold, and C. Freeman (2009), The interactive effects of elevated carbon dioxide and water table drawdown on carbon cycling in a Welsh ombrotrophic bog, Ecol. Eng., 35(6), 978986.
  • Forrest, G. I. (1971), Structure and production of North Pennine Blanket Bog Vegetation, J. Ecol., 59(2), 453479.
  • Freeman, C., N. Ostle, and H. Kang (2001), An enzymic “latch” on a global carbon store—A shortage of oxygen locks up carbon in peatlands by restraining a single enzyme, Nature, 409(6817), 149149.
  • Garnett, M. H., P. Ineson, and A. C. Stevenson (2000), Effects of burning and grazing on carbon sequestration in a Pennine blanket bog, UK, Holocene, 10(6), 729736.
  • Gibson, H. S., F. Worrall, T. P. Burt, and J. K. Adamson (2009), DOC budgets of drained peat catchments: implications for DOC production in peat soils, Hydrol. Process., 23(13), 19011911.
  • Holden, J. (2001), Recent reduction of frost in the North Pennines, J. Meteorol., 28(264), 369374.
  • Holden, J., et al. (2007), Environmental change in moorland landscapes, Earth Sci. Rev., 82(1–2), 75100.
  • Hope, D., S. M. Palmer, M. F. Billett, and J. J. C. Dawson (2004), Variations in dissolved CO2 and CH4 in a first-order stream and catchment: An investigation of soil-stream linkages, Hydrol. Process., 18(17), 32553275.
  • Houghton, J. T., L. G. Meira-Filho, B. A. Callender, N. Harris, A. Kattenberg, and K. Maskell (1995), Climate Change 1995: The Science of Climate Change, Cambridge Univ. Press, Cambridge, Mass.,
  • Immirzi, C. P., E. Maltby, and R. S. Clymo (1992), The Global status of Peatlands and their Role in Carbon Cycling, Friends of the Earth, London.
  • Intergovernmental Panel on Climate Change (IPCC) (2007), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, Mass.,
  • Johnson, G. A. L., and K. Dunham (1963), The Geology of Moor House, Nature, London.
  • Johnson, S. R., and A. K. Knapp (1993), The effect of fire on gas-exchange and aboveground biomass production in annually vs biennially burned Spartina-Pectinata wetlands, Wetlands, 13(4), 299303.
  • Kuhry, P. (1994), The role of fire in the development of Sphagnum-dominated peatlands in western boreal Canada, J. Ecol., 82(4), 899910.
  • Lehmann, J., J. Skjemstad, S. Sohi, J. Carter, M. Barson, P. Falloon, K. Coleman, P. Woodbury, and E. Krull (2008), Australian climate-carbon cycle feedback reduced by soil black carbon, Nature Geosci., 1(12), 832835.
  • Littlewood, I. G. (1995), Hydrological regimes, sampling strategies, and assessment of errors in mass load estimates for United Kingdom rivers, Environ. Int., 21(2), 211220.
  • Littlewood, I. G., C. D. Watts, and J. M. Custance (1998), Systematic application of United Kingdom river flow and quality databases for estimating annual river mass loads (1975–1994), Sci. Total Environ., 210–211, 2140.
  • Lloyd, C. R. (2006), Annual carbon balance of a managed wetland meadow in the Somerset Levels, UK, Agric. For. Meteorol., 138(1–4), 168179.
  • Lloyd, J., and J. A. Taylor (1994), On the temperature dependence of soil respiration, Funct. Ecol., 8(3), 315323.
  • Macdonald, J. A., D. Fowler, K. J. Hargreaves, U. Skiba, I. D. Leith, and M. B. Murray (1998), Methane emission rates from a northern wetland; Response to temperature, water table and transport, Atmos. Environ., 32(19), 32193227.
  • Moore, T. R., and M. Dalva (1993), The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils, J. Soil Sci., 44(4), 651664.
  • Moore, T. R., and N. T. Roulet (1993), Methane flux: Water table relations in northern wetlands, Geophys. Res. Lett., 20(7), 587590, doi:10.1029/93GL00208.
  • Moore, T. R., N. T. Roulet, and J. M. Waddington (1998), Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands, Clim. Change, 40(2), 229245.
  • Neal, C., and S. Hill (1994), Dissolved inorganic and organic carbon in moorland and forest streams: Plynlimon, Mid-Wales, J. Hydrol., 153(1–4), 231243.
  • Nilsson, M., J. Sagerfors, I. Buffam, H. Laudon, T. Eriksson, A. Grelle, L. Klemedtsson, P. Weslien, and A. Lindroth (2008), Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire—A significant sink after accounting for all C-fluxes, Global Change Biol., 14(10), 23172332.
  • Owensby, C. E., J. M. Ham, and L. M. Auen (2006), Fluxes of CO2 from grazed and ungrazed tallgrass prairie, Rangel. Ecol. Manage., 59(2), 111127.
  • Reed, M. S., et al. (2009), Using scenarios to explore UK upland futures, Futures, 41(9), 619630.
  • Ross, J. (1981), The Radiation Regime and Architecture of Plant Stands, Dr. W. Junk, The Hague.
  • Roulet, N. T., R. Ash, W. Quinton, and T. Moore (1993), Methane flux from drained northern peatlands: Effect of a persistent water table lowering on flux, Global Biogeochem. Cycles, 7(4), 749769, doi:10.1029/93GB01931.
  • Roulet, N. T., P. M. Lafleur, P. J. H. Richard, T. R. Moore, E. R. Humphreys, and J. Bubier (2007), Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland, Global Change Biol., 13(2), 397411.
  • Rowson, J. G. (2007), Carbon emissions from managed upland peat, Ph.D. thesis, Univ. of Durham, Durham, NC.,
  • Schlesinger, W. H. (1990), Evidence from chronosequence studies for a low carbon storage potential of soils, Nature, 348(6298), 232234.
  • Scottish Executive Environment and Rural Affairs Department (2001), Prescribed fire on moorland. Supplement to the muirburn code: A guide to best practice, edited, Scottish Executive Environment and Rural Affairs Department, Edinburgh.
  • Strack, M., J. M. Waddington, R. A. Bourbonniere, E. L. Buckton, K. Shaw, P. Whittington, and J. S. Price (2008), Effect of water table drawdown on peatland dissolved organic carbon export and dynamics, Hydrol. Process., 22(17), 33733385.
  • Sykes, J. M., and A. M. J. Lane (Eds.) (1996), The United Kingdom Environmental Change Network: Protocols for Standard Measurements of Terrestrial Sites, 220 pp., Stationery Office, London.
  • Tolonen, K., and J. Turunen (1996), Accumulation rates of carbon in mires in Finland and implications for climate change, Holocene, 6(2), 171178.
  • Turunen, J., E. Tomppo, K. Tolonen, and A. Reinikainen (2002), Estimating carbon accumulation rates of undrained mires in Finland—Application to boreal and subarctic regions, Holocene, 12(1), 6980.
  • Vitt, D. H., L. A. Halsey, I. E. Bauer, and C. Campbell (2000), Spatial and temporal trends in carbon storage of peatlands of continental western Canada through the Holocene, Can. J. Earth Sci., 37(5), 683693.
  • Ward, S. E., R. D. Bardgett, N. P. McNamara, J. K. Adamson, and N. J. Ostle (2007), Long-term consequences of grazing and burning on northern peatland carbon dynamics, Ecosystems, 10(7), 10691083.
  • Willey, J. D., R. J. Kieber, M. S. Eyman, and G. B. Avery (2000), Rainwater dissolved organic carbon: Concentrations and global flux, Global Biogeochem. Cycles, 14(1), 139148, doi:10.1029/1999GB900036.
  • Winer, B. J. (1971), Statistical Principles in Experimental Design, McGraw-Hill, New York.
  • Worrall, F., and T. P. Burt (2007), Trends in DOC concentration in Great Britain, J. Hydrol., 346(3–4), 8192.
  • Worrall, F., M. Reed, J. Warburton, and T. Burt (2003), Carbon budget for a British upland peat catchment, Sci. Total Environ., 312(1–3), 133146.
  • Worrall, F., T. P. Burt, and J. Adamson (2006), The rate of and controls upon DOC loss in a peat catchment, J. Hydrol., 321(1–4), 311325.
  • Worrall, F., T. Guilbert, and T. Besien (2007a), The flux of carbon from rivers: the case for flux from England and Wales, Biogeochemistry, 86(1), 6375.
  • Worrall, F., A. Armstrong, and J. K. Adamson (2007b), The effects of burning and sheep-grazing on water table depth and soil water quality in an upland peat, J. Hydrol., 339(1–2), 114.
  • Worrall, F., T. Burt, J. Adamson, M. Reed, J. Warburton, A. Armstrong, and M. Evans (2007c), Predicting the future carbon budget of an upland peat catchment, Clim. Change, 85(1–2), 139158.
  • Worrall, F., T. P. Burt, J. G. Rowson, J. Warburton, and J. K. Adamson (2009), The multi-annual carbon budget of a peat-covered catchment, Sci. Total Environ., 407(13), 40844094.
  • Yallop, A. R., J. I. Thacker, G. Thomas, M. Stephens, B. Clutterbuck, T. Brewer, and C. A. D. Sannier (2006), The extent and intensity of management burning in the English uplands, J. Appl. Ecol., 43(6), 11381148.