SEARCH

SEARCH BY CITATION

References

  • Ainsworth, E. A., and S. P. Long (2005), What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2, New Phytol., 165(2), 351372.
  • Albertson, J., G. Katul, and P. Wiberg (2001), Relative importance of local and regional controls on coupled water, carbon, and energy fluxes, Adv. Water Resour., 24(9–10), 11031118.
  • Amenu, G., and P. Kumar (2008), A model for hydraulic redistribution incorporating coupled soil-root moisture transport, Hydrol. Earth Syst. Sci., 12(1), 5574.
  • Amthor, J. (1994), Scaling CO2-photosynthesis relationships from the leaf to the canopy, Photosynth. Res., 39(3), 321350.
  • Anderson, M. P., J. M. Norman, T. P. Meyers, and G. R. Diak (2000), An analytical model for estimating canopy transpiration and carbon assimilation fluxes based on canopy light-use efficiency, Agric. For. Meteorol., 101(4), 265289.
  • Baldocchi, D., and P. Harley (1995), Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. ii. model testing and application, Plant Cell Environ., 18(10), 11571173.
  • Baldocchi, D., and T. Meyers (1998), On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: A perspective, Agric. For. Meteorol., 90(1–2), 125.
  • Baldocchi, D., S. Verma, and N. Rosenberg (1985), Water use efficiency in a soybean field: Influence of plant water stress, Agric. For. Meteorol., 34(1), 5365.
  • Baldocchi, D., K. Wilson, and L. Gu (2002), How the environment, canopy structure and canopy physiological functioning influence carbon, water and energy fluxes of a temperate broad-leaved deciduous forest-An assessment with the biophysical model CANOAK, Tree Physiol., 22(15–16), 1065.
  • Ball, J., I. Woodrow, and J. Berry (1987), A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, in Progress in Photosynthesis Research, vol. 4, edited by J. Biggins, pp. 221224, Martinus Nijhoff, Dordrecht, Netherlands.
  • Bernacchi, C., C. Pimentel, and S. Long (2003), In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis, Plant Cell Environ., 26(9), 14191430.
  • Bernacchi, C., P. Morgan, D. Ort, and S. Long (2005a), The growth of soybean under free air CO2 enrichment (FACE) stimulates photosynthesis while decreasing in vivo rubisco capacity, Planta, 220(3), 434446.
  • Bernacchi, C., S. Hollinger, and T. Meyers (2005b), The conversion of the corn/soybean ecosystem to no-till agriculture may result in a carbon sink, Global Change Biol., 11(11), 18671872.
  • Bernacchi, C., B. Kimball, D. Quarles, S. Long, and D. Ort (2007), Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration, Plant Physiol., 143(1), 134144.
  • Blizzard, W., and J. Boyer (1980), Comparative resistance of the soil and the plant to water transport, Plant Physiol., 66(5), 809814.
  • Boedhram, N., T. Arkebauer, and W. Batchelor (2001), Season-long characterization of vertical distribution of leaf area in corn, Agron. J., 93(6), 12351242.
  • Brisson, N., A. Olioso, and P. Clastre (1993), Daily transpiration of field soybeans as related to hydraulic conductance, root distribution, soil potential and midday leaf potential, Plant Soil, 154(2), 227237.
  • Brutsaert, W. (1982), Evaporation Into The Atmosphere: Theory, History and Applications, Springer, New York.
  • Bunce, J. (2004), Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions, Oecologia, 140(1), 110.
  • Caldwell, M., H. Meister, J. Tenhunen, and O. Lange (1986), Canopy structure, light microclimate and leaf gas exchange of Quercus coccifera L. in a Portuguese macchia: Measurements in different canopy layers and simulations with a canopy model, Trees Structure Function, 1(1), 2541.
  • Campbell, G. S., and J. M. Norman (1998), Introduction to Environmental Biophysics, 2nd ed., edited by G. S. Campbell, and J. M. Norman, Springer, New York.
  • Chen, X., G. Begonia, D. Alm, and J. Hesketh (1993), Responses of soybean leaf photosynthesis to CO2 and drought, Photosynthetica, 29(3), 447454.
  • Collatz, G., M. Ribas-Carbo, and J. Berry (1992), Coupled physiological-stomatal conductance model for leaves C4 plants, Aust. J. Plant Physiol., 19(5), 519538.
  • Curtis, P. (1996), A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide, Plant Cell Environ., 19(2), 127137.
  • Davidson, E., I. Janssens, and Y. Luo (2006), On the variability of respiration in terrestrial ecosystems: Moving beyond Q10, Global Change Biol., 12(2), 154164.
  • Dermody, O., S. Long, and E. DeLucia (2006), How does elevated CO2 or ozone affect the leaf-area index of soybean when applied independently? New Phytol., 169(1), 145155.
  • Drewry, D. T., P. Kumar, S. Long, C. Bernacchi, X.-Z. Liang, and M. Sivapalan (2010), Ecohydrological responses of dense canopies to environmental variability: 2. Role of acclimation under elevated CO2, J. Geophys. Res., 115, G04023, doi:10.1029/2010JG001341.
  • Ellsworth, D. (2000), Seasonal CO2 assimilation and stomatal limitations in a pinus taeda canopy, Tree Physiol., 20(7), 435.
  • Ellsworth, D., and P. Reich (1993), Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest, Oecologia, 96(2), 169178.
  • Feddes, R., et al. (2001), Modeling root water uptake in hydrological and climate models, Bull. Am. Meteorol. Soc., 82(12), 27972809.
  • Field, C. (1983), Allocating leaf nitrogen for the maximization of carbon gain: Leaf age as a control on the allocation program, Oecologia, 56(2), 341347.
  • Furbank, R., C. Jenkins, and M. Hatch (1989), CO2 concentrating mechanism of C4 photosynthesis permeability of isolated bundle sheath cells to inorganic carbon, Plant Physiol., 91(4), 13641371.
  • Gedney, N., P. Cox, R. Betts, O. Boucher, C. Huntingford, and P. Stott (2006), Detection of a direct carbon dioxide effect in continental river runoff records, Nature, 439(7078), 835838.
  • Ghannoum, O. (2009), C4 photosynthesis and water stress, Ann. Bot., 103(4), 635644.
  • Goudriaan, J. (1977), Crop micrometeorology: A simulation study, Cent. for Agric. Publ. and Doc., Wageningen, Netherlands.
  • Goulden, M., J. Munger, S. Fan, B. Daube, and S. Wofsy (1996), Measurements of carbon sequestration by long-term eddy covariance: Methods and a critical evaluation of accuracy, Global Change Biol., 2(3), 169182.
  • Gu, L., H. Shugart, J. Fuentes, T. Black, and S. Shewchuk (1999), Micrometeorology, biophysical exchanges and NEE decomposition in a two-story boreal forest: Development and test of an integrated model, Agric. For. Meteorol., 94, 123148.
  • Gutschick, V. P. (2007), Plant acclimation to elevated CO2: From simple regularities to biogeographic chaos, Ecol. Modell., 200(3–4), 433451.
  • Hatch, M. (1987), C4 photosynthesis: A unique blend of modified biochemistry, anatomy and ultrastructure, Biochim. Biophys. Acta, 895(8), 1106.
  • Hinzman, L., D. Goering, and D. Kane (1998), A distributed thermal model for calculating soil temperature profiles and depth of thaw in permafrost regions, J. Geophys. Res., 103(D22), 28,97528,991.
  • Hollinger, S., C. Bernacchi, and T. Meyers (2005), Carbon budget of mature no-till ecosystem in North Central Region of the United States, Agric. For. Meteorol., 130(1–2), 5969.
  • Horn, H. (1971), The Adaptive Geometry of Trees, Princeton Univ. Press, Princeton, N. J.,
  • Huang, B., and P. Nobel (1994), Root hydraulic conductivity and its components, with emphasis on desert succulents, Agron. J., 86(5), 767.
  • Huxman, T., E. Hamerlynck, B. Moore, S. Smith, D. Jordan, S. Zitzer, R. Nowak, J. Coleman, and J. Seemann (1998), Photosynthetic down-regulation in Larrea tridentata exposed to elevated atmospheric CO2: Interaction with drought under glasshouse and field(FACE) exposure, Plant Cell Environ., 21(11), 11531161.
  • Jackson, R., H. Mooney, and E. Schulze (1997), A global budget for fine root biomass, surface area, and nutrient contents, Proc. Natl. Acad. Sci., 94(14), 7362.
  • Jackson, R., et al. (2000), Belowground consequences of vegetation change and their treatment in models, Ecol. Appl., 10(2), 470483.
  • Janssens, I., and K. Pilegaard (2003), Large seasonal changes in Q10 of soil respiration in a beech forest, Global Change Biol., 9(6), 911918.
  • Jones, H. (1973), Moderate-term water stresses and associated changes in some photosynthetic parameters in cotton, New Phytol., 72, 10951105.
  • Jones, H. (1992), Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology, Cambridge Univ. Press, New York.
  • Kabela, E., B. Hornbuckle, M. Cosh, M. Anderson, and M. Gleason (2009), Dew frequency, duration, amount, and distribution in corn and soybean during smex05, Agric. For. Meteorol., 149(1), 1124.
  • Katul, G., L. Mahrt, D. Poggi, and C. Sanz (2004), One-and two-equation models for canopy turbulence, Boundary Layer Meteorol., 113(1), 81109.
  • Kleidon, A., and M. Heimann (2000), Assessing the role of deep rooted vegetation in the climate system with model simulations: Mechanism, comparison to observations and implications for Amazonian deforestation, Clim. Dyn., 16(2), 183199.
  • Labat, D., Y. Goddéris, J. L. Probst, and J. L. Guyot (2004), Evidence for global runoff increase related to climate warming, Adv. Water Resour., 27(6), 631642.
  • Lai, C., G. Katul, D. Ellsworth, and R. Oren (2000), Modelling vegetation-atmosphere CO2 exchange by a coupled Eulerian-Langrangian approach, Boundary Layer Meteorol., 95(1), 91122.
  • Lang, A. (1991), Application of some of Cauchy's theorems to estimation of surface areas of leaves, needles and branches of plants, and light transmittance, Agric. For. Meteorol., 55(3–4), 191212.
  • Lavigne, M., et al. (1997), Comparing nocturnal eddy covariance measurements to estimates of ecosystem respiration made by scaling chamber measurements at six coniferous boreal sites, J. Geophys. Res., 102(D24), 28,97728,985.
  • Leakey, A., C. Bernacchi, D. Ort, and S. Long (2006a), Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought 1 [oa], Plant Cell Environ., 29(9), 17941800.
  • Leakey, A., M. Uribelarrea, E. Ainsworth, S. Naidu, A. Rogers, D. Ort, and S. Long (2006b), Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought 1 [oa], Plant Physiol., 140(2), 779790.
  • Leuning, R., F. Kelliher, D. Pury, and E. Schulze (1995), Leaf nitrogen, photosynthesis, conductance and transpiration: Scaling from leaves to canopies, Plant Cell Environ., 18(10), 11831200.
  • Lhomme, J. (1998), Formulation of root water uptake in a multi-layer soil-plant model: Does van den Honert's equation hold? Hydrol. Earth Syst. Sci., 2, 3140.
  • Liu, F., M. Andersen, S. Jacobsen, and C. Jensen (2005), Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying, Environ. Exp. Bot., 54(1), 3340.
  • Long, S. P., E. A. Ainsworth, A. Rogers, and D. R. Ort (2004), Rising atmospheric carbon dioxide: Plants FACE the future, Ann. Rev. Plant Biol., 55(1), 591628.
  • Long, S., X. Zhu, S. Naidu, and D. Ort (2006a), Can improvement in photosynthesis increase crop yields? Plant Cell Environ., 29(3), 31530.
  • Long, S. P., E. A. Ainsworth, A. D. B. Leakey, J. Nosberger, and D. R. Ort (2006b), Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations, Science, 312(5782), 19181921.
  • Massman, W., and X. Lee (2002), Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges, Agric. For. Meteorol., 113(1–4), 121144.
  • Meyers, T., and S. Hollinger (2004), An assessment of storage terms in the surface energy balance of maize and soybean, Agric. For. Meteorol., 125(1–2), 105115.
  • Meyers, T., M. Heuer, and T. Wilson (2010), Ameriflux bondville site description, Oak Ridge Natl. Lab., Oak Ridge, Tenn. (Available at http://public.ornl.gov/ameriflux/).
  • Midgley, J. (2003), Is bigger better in plants? The hydraulic costs of increasing size in trees, Trends Ecol. Evol., 18(1), 56.
  • Moncrieff, J., Y. Malhi, and R. Leuning (1996), The propagation of errors in long-term measurements of land-atmosphere fluxes of carbon and water, Global Change Biol., 2(3), 231240.
  • Morgan, P., G. Bollero, R. Nelson, F. Dohleman, and S. Long (2005), Smaller than predicted increase in aboveground net primary production and yield of field-grown soybean under fully open-air [CO2] elevation, Global Change Biol., 11(10), 18561865.
  • Nikolov, N., and K. Zeller (2003), Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial ecosystems and the atmosphere. i: Model description, Environ. Pollut., 124(2), 231246.
  • Nikolov, N., W. Massman, and A. Schoettle (1995), Coupling biochemical and biophysical processes at the leaf level: An equilibrium photosynthesis model for leaves of c3 plants, Ecol. Modell., 80(2–3), 205235.
  • Norman, J. (1979), Modeling the complete crop canopy, in Modification of the Aerial Environment of Crops, pp. 249280, Am. Soc. of Agric. Eng., St. Joseph, Mich.,
  • Norman, J., W. Kustas, and K. Humes (1995), Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature, Agric. For. Meteorol., 77(3–4), 263293.
  • Oleson, K., et al. (2004), Technical description of the community land model (CLM), Tech. Note NCAR/TN-461+ STR, Natl. Cent. for Atmos. Res., Boulder, Colo.,
  • Ort, D., E. Ainsworth, M. Aldea, D. Allen, C. Bernacchi, M. Berenbaum, and G. Bollero (2006), SoyFACE: The effects and interactions of elevated [CO2] and [O3] on soybean, in Managed Ecosystems and CO2: Case Studies, Processes, and Perspectives, pp. 7185, Springer, New York.
  • Palmroth, S., C. Maier, H. McCarthy, A. Oishi, H. Kim, K. Johnsen, G. Katul, and R. Oren (2005), Contrasting responses to drought of forest floor CO2 efflux in a Loblolly pine plantation and a nearby Oak-Hickory forest, Global Change Biol., 11(3), 421434.
  • Poggi, D., A. Porporato, L. Ridolfi, J. Albertson, and G. Katul (2004), The effect of vegetation density on canopy sub-layer turbulence, Boundary Layer Meteorol., 111(3), 565587.
  • Pyles, R., B. Weare, and K. Pawu (2000), The UCD advanced canopy-atmosphere-soil algorithm: Comparisons with observations from different climate and vegetation regimes, Q. J. R. Meteorol. Soc., 126(569), 29512980.
  • Raupach, M. (1989), Applying Lagrangian fluid mechanics to infer scalar source distributions from concentration profiles in plant canopies, Agric. For. Meteorol., 47(2–4), 85108.
  • Sage, R. (1994), Acclimation of photosynthesis to increasing atmospheric CO2: The gas exchange perspective, Photosynth. Res., 39(3), 351368.
  • Sage, R., T. Sharkey, and J. Seemann (1989), Acclimation of photosynthesis to elevated CO2 in five C3 species 1, Plant Physiol., 89(2), 590596.
  • Schenk, H., and R. Jackson (2002), The global biogeography of roots, Ecol. Monogr., 72(3), 311328.
  • Schulze, E., and A. Hall (1982), Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments, Encycl. Plant Physiol., 12, 181230.
  • Sinclair, T., G. Bingham, E. Lemon, and L. Allen Jr. (1975), Water use efficiency of field-grown maize during moisture stress, Plant Physiol., 56(2), 245.
  • Sinclair, T., C. Murphy, and K. Knoerr (1976), Development and evaluation of simplified models for simulating canopy photosynthesis and transpiration, J. Appl. Ecol., 13(3), 813829.
  • Siqueira, M., G. Katul, and A. Porporato (2008), Onset of water stress, hysteresis in plant conductance, and hydraulic lift: Scaling soil water dynamics from millimeters to meters, Water Resour. Res., 44, W01432, doi:10.1029/2007WR006094.
  • Sperry, J. (2000), Hydraulic constraints on plant gas exchange, Agric. For. Meteorol., 104(1), 1323.
  • Spitters, C. (1986), Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. II: Calculation of canopy photosynthesis, Agric. For. Meteorol., 38(1–3), 231242.
  • Tufekcioglu, A., J. Raich, T. Isenhart, and R. Schultz (1998), Fine root dynamics, coarse root biomass, root distribution, and soil respiration in a multispecies riparian buffer in Central Iowa, USA, Agrofor. Syst., 44(2), 163174.
  • Tuzet, A., A. Perrier, and R. Leuning (2003), A coupled model of stomatal conductance, photosynthesis and transpiration, Plant Cell Environ., 26(7), 10971116.
  • Tyree, M., and J. Sperry (1988), Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? 1 Answers from a model, Plant Physiol., 88(3), 574580.
  • Van den Hurk, B., and K. McNaughton (1995), Implementation of near-field dispersion in a simple two-layer surface resistance model, J. Hydrol., 166(3–4), 293311.
  • Vico, G., and A. Porporato (2008), Modelling C3 and C4 photosynthesis under water-stressed conditions, Plant Soil, 313(1), 187203.
  • von Caemmerer, S., and R. Furbank (1999), Modeling C4 photosynthesis, in C4 Plant Biology, edited by R. Sage, and R. Monson, pp. 173211, Academic, San Diego, Calif.,
  • Weiss, A., D. Lukens, J. Norman, and J. Steadman (1989), Leaf wetness in dry beans under semi-arid conditions, Agric. For. Meteorol., 48(1–2), 149162.
  • Welles, J., and J. Norman (1991), Instrument for indirect measurement of canopy architecture, Agron. J., 83(5), 818.
  • Williams, M., E. Rastetter, D. Fernandes, M. Goulden, S. Wofsy, G. Shaver, J. Melillo, J. Munger, S. Fan, and K. Nadelhoffer (1996), Modelling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvard Forest: The regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties, Plant Cell Environ., 19(8), 911927.
  • Wilson, K., and T. Meyers (2001), The spatial variability of energy and carbon dioxide fluxes at the floor of a deciduous forest, Boundary Layer Meteorol., 98(3), 443473.
  • Wilson, K., D. Baldocchi, and P. Hanson (2000a), Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest, Tree Physiol., 20(9), 565578.
  • Wilson, K., D. Baldocchi, and P. Hanson (2000b), Quantifying stomatal and non-stomatal limitations to carbon assimilation resulting from leaf aging and drought in mature deciduous tree species, Tree Physiol., 20(12), 787.
  • Wu, J., Y. Liu, and D. Jelinski (2000), Effects of leaf area profiles and canopy stratification on simulated energy fluxes: The problem of vertical spatial scale, Ecol. Modell., 134(2), 283297.
  • Wuebbles, D., and K. Hayhoe (2004), Climate change projections for the United States Midwest, Mitig. Adapt. Strateg. Global Change, 9(4), 335363.
  • Xu, L., and D. Baldocchi (2003), Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (quercus douglasii) under prolonged summer drought and high temperature, Tree Physiol., 23(13), 865.