SEARCH

SEARCH BY CITATION

Keywords:

  • methane;
  • wetlands;
  • permafrost;
  • hydrates;
  • biogenic emissions

[1] We have reviewed the available scientific literature on how natural sources and the atmospheric fate of methane may be affected by future climate change. We discuss how processes governing methane wetland emissions, permafrost thawing, and destabilization of marine hydrates may affect the climate system. It is likely that methane wetland emissions will increase over the next century. Uncertainties arise from the temperature dependence of emissions and changes in the geographical distribution of wetland areas. Another major concern is the possible degradation or thaw of terrestrial permafrost due to climate change. The amount of carbon stored in permafrost, the rate at which it will thaw, and the ratio of methane to carbon dioxide emissions upon decomposition form the main uncertainties. Large amounts of methane are also stored in marine hydrates, and they could be responsible for large emissions in the future. The time scales for destabilization of marine hydrates are not well understood and are likely to be very long for hydrates found in deep sediments but much shorter for hydrates below shallow waters, such as in the Arctic Ocean. Uncertainties are dominated by the sizes and locations of the methane hydrate inventories, the time scales associated with heat penetration in the ocean and sediments, and the fate of methane released in the seawater. Overall, uncertainties are large, and it is difficult to be conclusive about the time scales and magnitudes of methane feedbacks, but significant increases in methane emissions are likely, and catastrophic emissions cannot be ruled out. We also identify gaps in our scientific knowledge and make recommendations for future research and development in the context of Earth system modeling.