SEARCH

SEARCH BY CITATION

References

  • Abdi, A., W. C. Lau, M.-S. Alouini, and M. Kaveh (2003), A new simple model for land mobile satellite channels: First- and second-order statistics, IEEE Trans. Wirel. Comm., 2(3), 519528.
  • Barts, R. M., and W. L. Stutzman (1992), Modeling and simulation of mobile satellite propagation, IEEE Trans. Antennas Propag., 40(4), 375382.
  • Blaunstein, N., and J. B. Andersen (2002), Multipath Phenomena in Cellular Networks, Artech House, Boston, Mass.
  • Blaunstein, N., and C. Christodoulou (2007), Radio Propagation and Adaptive Antennas for Wireless Communication Links: Terrestrial, Atmospheric and Ionospheric, Wiley-Interscience, Hoboken, N. J.
  • Blaunstein, N., D. Katz, D. Censor, A. Freedman, I. Matityahu, and I. Gur-Arie (2002), Prediction of loss characteristics in built-up areas with various buildings' overlay profiles, IEEE Antennas Propag. Mag., 44(1), 181192.
  • Blaunstein, N., N. Yarkoni, and D. Katz (2006), Spatial and temporal distribution of the VHF/UHF radio waves in built-up land communication links, IEEE Trans. Antennas Propag., 54(8), 23452356.
  • Blaunstein, N., D. Katz, M. Hayakawa, and Y. Sanoh (2009), Pass loss pattern prediction in Tokyo city based on deterministic ray tracing and stochastic multi-parametric approaches, in Proceedings of 3rd European Conference on Antennas and Propagation (EuCAP-2009), , Berlin, March 23–27, pp. 32493253, IEEE Press, Piscataway, N. J.
  • Brunt, P. (1996), IRIDIUM—Overview and status, J. Space Commun., 14(1), 6168.
  • Butt, G., G. Evans, and M. Richharia (1992), Narrowband channel statistics from multiband propagation measurements applicable to high elevation angle land-mobile satellite systems, IEEE Trans. Select. Areas Commun., 10(8), 12191226.
  • Corazza, G. E., and F. Vatalaro (1994), A statistical model for land mobile satellite channels and its application on nongeostationary orbit systems, IEEE Trans. Vehicular Technol., 43(3), 738742.
  • Evans, J. V. (1998), Satellite systems for personal communications, Proc. IEEE, 86(7), 13251341.
  • Farserotu, J., and R. Prasad (2002), IP/ATM Mobile Satellite Networks, Artech House, Boston, Mass.
  • Fontan, F. P., et al. (1997a), Complex envelope three-state Markov model based simulator for the narrow-band LMS channel, Int. J. Satell. Commun., 15(1), 115.
  • Fontan, F. P., et al. (1997b), A versatile framework for a narrow- and wide-band statistical propagation model for the LMS channel, IEEE Trans. Broadcast, 43(4), 431458.
  • Hayakawa, M., D. Katz, and N. Blaunstein (2008), Signal power distribution in time delay in Tokyo city experimental sites, Radio Sci., 43, RS3006, doi:10.1029/2007RS003748.
  • Karasawa, Y., K. Kimura, and K. Minamisono (1997), Analysis of availability improvement in LMSS by means of satellite diversity based on three-state propagation state model, IEEE Trans. Vehicular Technol., 46(4), 10471056.
  • Loo, C. (1985), A statistical model for land mobile satellite link, IEEE Trans. Vehicular Technol., 34(3), 122127.
  • Loo, C., and J. S. Butterworth (1998), Land mobile satellite channel measurements and modeling, Proc. IEEE, 86(7), 14421462.
  • Lutz, E., D. Cygan, M. Dippold, F. Dolainsky, and W. Papke (1991), The land mobile satellite communication channel-recording, statistics and channel model, IEEE Trans. Vehicular Technol., 40(2), 375385.
  • Parks, M. A. N., B. G. Evans, G. Butt, and S. Buonomo (1996), Simultaneous wideband propagation measurements for mobile satellite communication systems at L- and S-bands, in Proceedings of 16th International Conference on Communications Systems, , Washington, D. C., pp. 929936, IEEE Press, Piscataway, N. J.
  • Saunders, S. R. (2001), Antennas and Propagation for Wireless Communication Systems, John Wiley, Hoboken, N. J.
  • Saunders, S. R., and B. G. Evans (1996), A physical model of shadowing probability for land mobile satellite propagation, Electron. Lett., 32(17), 15481549.
  • Singh, J. (1993), Project 21/Inmarsat-P: Putting reality into the handheld satphone vision, paper presented at International Mobile Satellite Conference, Paris, Oct.
  • Smith, D. (1994), Operational innovations for the 48-satellite Globalstar constellation, in Proceedings of 15th International Conference on Communications Satellite Systems, Collection of Technical Papers, San Diego, CA, February/March, pp. 11071112, Am. Inst. of Aeronaut. and Astronaut., Reston, Va.
  • Sterling, D. E., and J. E. Harlelid (1991), The Iridium TM System—A revolutionary satellite communications system developed with innovative applications of technology, in Proceedings of Conference on Military Satellite Communications, McLean, VA, pp. 436440, IEEE Press, Piscataway, N. J.
  • Tzaras, C., S. R. Saunders, and B. G. Evans (1998), A tap-gain process for wideband mobile satellite PCN channels, paper presented at COST 252/259 Joint Workshop, Bradford, U. K., 21–22 April.
  • Vatalaro, F., and F. Mazzenga (1998), Statistical channel modeling and performance evaluation in satellite personal communications, Int. J. Satell. Commun., 16(2), 249255.
  • Wiedeman, R. A., A. B. Salmasi, and D. Rouffet (1992), Globalstar: Mobile communications wherever you are, in Proceedings of 14th International Conference on Communications Satellite Systems, Collection of Technical Papers, Washington, pp. 123129, Am. Inst. of Aeronaut. and Astronaut., Reston, Va.
  • Wu, W. W. (1997), Satellite communication, Proc. IEEE, 85(6), 9981010.
  • Xie, Y., and Y. Fang (2000), A general statistical channel model for mobile satellite systems, IEEE Trans. Vehicular Technol., 49(3), 744752.
  • Yarkoni, N., N. Blaunstein, and D. Katz (2007), Link budget and radio coverage design for various multipath urban communication links, Radio Sci., 42, RS2009, doi:10.1029/2005RS003345.