• Álvarez Melcón, A., G. Connor, and M. Guglielmi (1996), New simple procedure for the computation of the multimode admittance or impedance matrix of planar waveguide junctions, IEEE Trans. Microwave Theory Tech., 44(3), 413418.
  • Arcioni, P., M. Bressan, G. Conciauro, and L. Perregrini (1996), Wideband modelling of arbitrarily shaped E-plane componentes by the boundary integral-resonant mode expansion method, IEEE Trans. Microwave Theory Tech., 44(11), 20832092.
  • Auda, H., and R. F. Harrington (1984), Inductive posts and diaphragms of arbitrary shape and number in a rectangular waveguide, IEEE Trans. Microwave Theory Tech., 32(6), 606613.
  • Aurora Software and Testing, S.L. (2009), Full-wave electromagnetic simulation tool 3D v6.0, Valencia, Spain. [Available at]
  • Balanis, C. A. (1989), Advanced Engineering Electromagnetics, John Wiley, Chichester, U. K.
  • Bunger, R., and F. Arndt (2000), Moment method analysis of arbitrarily 3D metallic N-port waveguide structures, IEEE Trans. Microwave Theory Tech., 48(4), 531537.
  • Cameron, R. J., R. Mansour, and C. M. Kudsia (2007), Microwave Filters for Communication Systems: Fundamentals, Design and Applications, Wiley-Interscience, Chichester, U. K.
  • Capolino, F., D. R. Wilton, and W. A. Johnson (2005), Efficient computation of the 2-D Green's function for 1-D periodic structures using the Ewald method, IEEE Trans. Antennas Propag., 53(9), 29772984.
  • Conciauro, G., P. Arcioni, M. Bressan, and L. Perregrini (1996), Wideband modeling of arbitrarily shaped H-plane waveguide components by the “boundary integral-resonant mode expansion method”, IEEE Trans. Microwave Theory Tech., 44(7), 10571066.
  • Esteban, H., S. Cogollos, V. Boria, A. A. San Blas, and M. Ferrando (2002), A new hybrid mode-matching/numerical method for the analysis of arbitrarily shaped inductive obstacles and discontinuities in rectangular waveguides, IEEE Trans. Microwave Theory Tech., 50(4), 12191224.
  • Guglielmi, M., and G. Gheri (1994), Rigurous multimode equivalent network representation of capacitive steps, IEEE Trans. Microwave Theory Tech., 42(4), 622628.
  • Harrington, R. F. (1968), Field Computation by Moment Methods, MacMillan, New York.
  • Kirilenko, A. A., S. L. Senkevich, V. I. Tkachenko, and B. G. Tysik (1994), Waveguide diplexer and multiplexer design, IEEE Trans. Microwave Theory Tech., 42(7), 13931396.
  • Kirilenko, A. A., L. A. Rud, and V. I. Tkachenko (1996), Semi-inversion method for mathematically accurate analysis of rectangular waveguide H plane angular discontinuities, Radio Sci., 31(5), 12711280, doi:10.1029/96RS01056.
  • Leviatan, Y., P. G. Li, A. T. Adams, and J. Perini (1983), Single post inductive obstacle in rectangular waveguide, IEEE Trans. Microwave Theory Tech., 31(10), 806812.
  • Levy, R. (1973), Tapered corrugated waveguide low-pass filters, IEEE Trans. Microwave Theory Tech., 21(8), 526532.
  • Lyapin, V. P., M. B. Manuilov, and G. P. Sinyavsky (1996), Quasi-analytical method for analysis of multisection waveguide structures with step discontinuities, Radio Sci., 31(6), 17611772, doi:10.1029/96RS02558.
  • Nosich, A. I. (1999), The method of analytical regularization in wave-scattering and eigenvalue problems: foundations and review of solutions, IEEE Antennas Propag. Mag., 41(3), 3439.
  • Pérez Soler, F. J., F. D. Quesada Pereira, J. Pascual García, D. Cañete Rebenaque, and A. Álvarez Melcón (2007), Efficient integral equation formulation for inductive waveguide components with posts touching the waveguide walls, Radio Sci., 42, RS6002, doi:10.1029/2006RS003591.
  • Peterson, A. F., S. L. Ray, and R. Mittra (1998), Computational Methods for Electromagnetics, chap. 8, pp. 321323, IEEE Press, Piscataway, N. J.
  • Quesada Pereira, F. D., F. J. Pérez Soler, B. Gimeno Martínez, V. E. Boria Esbert, J. Pascual García, J. L. Gómez Tornero, and A. Álvarez Melcón (2006), Efficient analysis tool of inductive passive waveguide components and circuits using a novel spatial domain integral equation formulation, paper presented at 36th European Microwave Conference, Inst. of Electr. and Electron. Eng., Manchester, U. K.
  • Quesada Pereira, F. D., V. E. Boria Esbert, J. Pascual García, A. Vidal Pantaleoni, A. Álvarez Melcón, J. Gómez Tornero, and B. Gimeno Martínez (2007), Efficient analysis of arbitrarily shaped inductive obstacles in rectangular waveguides using a surface integral equation formulation, IEEE Trans. Microwave Theory Tech., 55(4), 715721.
  • Rao, S. M., D. R. Wilton, and A. W. Glisson (1982), Electromagnetic scattering by surfaces of arbitrarily shape, IEEE Trans. Antennas Propag., 30(5), 409418.
  • Rojas, R. G. (1988), Scattering by an inhomogeneous dielectric/ferrite cylinder of arbitrary cross-section shape, oblique incidence case, IEEE Trans. Antennas Propag., 36(2), 238246.
  • Salazar Palma, M., T. K. Sarkar, L. E. G. T. Roy, and A. Djordjevic (1998), Iterative and Self-Adaptive Finite Elements in Electromagnetic Modeling, Artech House, Norwood, Mass.
  • Twersky, V. (1962), On scattering of waves by the infinite grating of circular cylinders, IRE Trans. Antennas Propag., 10(6), 737765.
  • Young, L. (1962), Stepped-impedance transformers and filter prototypes, IEEE Trans. Microwave Theory Tech., 10(5), 339359.