Using TEC and radio scintillation data from the CITRIS radio beacon receiver to study low and midlatitude ionospheric irregularities

Authors


Abstract

[1] Unique data on ionospheric plasma irregularities from the Naval Research Laboratory Scintillation and TEC Receiver in Space (CITRIS) instrument is presented. CITRIS is a multiband receiver that recorded Total Electron Content (TEC) and radio scintillations from Low-Earth Orbit (LEO) on STPSat1. The 555 ± 5 km altitude 35° inclination orbit covers low and midlatitudes. The measurements require propagation from a transmitter to a receiver through the F region plasma. CITRIS used both 1) satellite beacons in LEO and 2) the French sponsored global network of ground-based Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) beacons. This paper is both a brief review of the CITRIS experiment and the first combined TEC and scintillation study of ionospheric irregularities using a satellite-borne beacon receiver. It primarily focuses on CITRIS/DORIS observations and is a case study of the ionospheric irregularities and associated scintillation characteristics at 401.25 MHz during the 2008 equinox solar minimum. In addition, CITRIS was operated in a complementary fashion with the Communication/Navigations Outages Forecasting System (C/NOFS) satellite during C/NOFS' first year of operations and comparison with measured C/NOFS irregularity characteristics are made. Several types of irregularities have been studied including Spread–F and the newly discovered dawn-side depletions.

Ancillary