SEARCH

SEARCH BY CITATION

References

  • Abramowitz, M., and I. Stegun (1965), Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables, Dover, New York.
  • Andriulli, F., K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen, and E. Michielssen (2008), A multiplicative Calderon preconditioner for the electric field integral equation, IEEE Trans. Antennas Propag., 56(8), 23982412.
  • Beghein, Y., K. Cools, D. De Zutter, F. P. Andriulli, and E. Michielssen (2011), A Calderón multiplicative preconditioner for the PMCHWT equation applied to chiral media, paper presented at Antennas and Propagation Society International Symposium, Inst. of Electr. and Electron. Eng., Spokane, Wash.
  • Bogaert, I., and F. Olyslager (2008), New plane wave addition theorem, paper presented at 3rd International Conference on Mathematical Modeling of Wave Phenomena, Vaxjo Univ., Vaxjo, Sweden.
  • Bogaert, I., and F. Olyslager (2009a), A broadband stable addition theorem for the two-dimensional MLFMA, paper presented at Antennas and Propagation Society International Symposium, Inst. of Electr. and Electron. Eng., Charleston, S. C.
  • Bogaert, I., and F. Olyslager (2009b), A low frequency stable plane wave addition theorem, J. Comput. Phys., 228(4), 10001016.
  • Bogaert, I., J. Peeters, J. Fostier, and F. Olyslager (2008a), NSPWMLFMA: A low frequency stable formulation of the MLFMA in three dimensions, paper presented at Antennas and Propagation Society International Symposium, Inst. of Electr. and Electron. Eng., San Diego, Calif.
  • Bogaert, I., J. Peeters, and F. Olyslager (2008b), A nondirective plane wave mlfma stable at low frequencies, IEEE Trans. Antennas Propag., 56(12), 37523769, doi:10.1109/TAP.2008.2007356.
  • Bogaert, I., D. De Zutter, K. Cools, J. Fostier, B. Michiels, and J. Peeters (2010), A broadband stable and efficient addition theorem for the two-dimensional helmholtz equation, paper presented at Antennas and Propagation Society International Symposium, Inst. of Electr. and Electron. Eng., Toronto, Ont., Canada.
  • Bogaert, I., J. Peeters, and D. De Zutter (2011), Error control of the vectorial nondirective stable plane wave multilevel fast multipole algorithm, Prog. Electromagn. Res., 111, 271290.
  • Buffa, A., and S. Christiansen (2007), A dual finite element complex on the barycentric refinement, Math. Comput., 260, 17431769.
  • Cheng, H., W. Crutchfield, Z. Gimbutas, and L. Greengard (2006), A wideband fast multipole method for the helmholtz equation in three dimensions, J. Comput. Phys., 216(1), 300325.
  • Chew, W., J. M. Jin, C. Lu, E. Michielssen, and J. Song (1997), Fast solution methods in electromagnetics(Invited), IEEE Trans. Antennas Propag., 45(3), 420431.
  • Coifman, R., V. Rokhlin, and S. Wandzura (1993), The fast multipole method for the wave equation: A pedestrian description, IEEE Antennas Propag. Mag., 35(3), 712.
  • Cools, K., F. Andriulli, F. Olyslager, and E. Michielssen (2009), Improving the mfie's accuracy by using a mixed discretization, paper presented at Antennas and Propagation Society International Symposium, Inst. of Electr. and Electron. Eng., Charleston, S. C.
  • Darve, E., and P. Havé (2004), Efficient fast multipole method for low-frequency scattering, J. Comput. Phys., 197(1), 341363.
  • Ergül, Ö., and L. Gürel (2004), Investigation of the inaccuracy of the mfie discretized with the rwg basis functions, paper presented at Antennas and Propagation Society International Symposium, Inst. of Electr. and Electron. Eng., Monterey, Calif.
  • Ergül, Ö., and L. Gürel (2005), Improved testing of the magnetic field integral equation, IEEE Microwave Wireless Commun. Lett., 15(10), 615617.
  • Ergül, O., and L. Gürel (2006), The use of curl-conforming basis functions for the magnetic-field integral equation, IEEE Trans. Antennas Propag., 54(7), 19171926.
  • Ergül, Ö., and L. Gürel (2008), Hierarchical parallelization strategy for the multilevel fast multipole algorithm in computational electromagnetics, Electron. Lett., 44(1), 35.
  • Fostier, J., and F. Olyslager (2008a), An asynchronous parallel mlfma for scattering at multiple dielectric objects, IEEE Trans. Antennas Propag., 56(8), 23462355, doi:10.1109/TAP.2008.926787.
  • Fostier, J., and F. Olyslager (2008b), Provably scalable parallel multilevel fast multipole algorithm, IET Electron. Lett., 44(19), 11111113.
  • Jiang, L., and W. Chew (2005), A mixed-form fast multipole algorithm, IEEE Trans. Antennas Propag., 53(12), 41454156.
  • Olyslager, F. (2004), Discretization of continuous spectra based on perfectly matched layers, SIAM J. Appl. Math., 64(4), 14081433.
  • Peeters, J. (2010), Efficient Simulation of 3D Electromagnetic Scattering Problems Using Boundary Integral Equations, Ghent Univ., Ghent, Belgium.
  • Peterson, A. (2006), Mapped Vector Basis Functions in Electromagnetic Integral Equations, Morgan and Claypool, San Francisco, Calif.
  • Peterson, A. F. (2008), Observed baseline convergence rates and superconvergence in the scattering cross section obtained from numerical solutions of the mfie, IEEE Trans. Antennas Propag., 56, 35103515.
  • Pissoort, D., E. Michielssen, D. Vande Ginste, and F. Olyslager (2006), A rank-revealing preconditioner for the fast integral-equation-based characterization of electromagnetc crystal devices, Microwave Opt. Technol. Lett., 48(4), 783789.
  • Pissoort, D., E. Michielssen, D. Vande Ginste, and F. Olyslager (2007), Fast-multipole analysis of electromagnetic scattering by photonic crystal slabs, IEEE J. Lightwave Technol., 25(9), 28472863.
  • Poggio, A., and E. Miller (1973), Integral equation solutions of three-dimensional scattering problems, in Computer Techniques for Electromagnetics, chap. IV, Pergamon, Oxford, U. K.
  • Rius, J., E. Ubeda, and J. Parrón (2001), On the testing of the magnetic field integral equation with rwg basis functions in method of moments, IEEE Trans. Antennas Propag., 49(11), 15501553.
  • Song, J., C. Lu, W. Chew, and S. Lee (1998), Fast illinois solver code, IEEE Antennas Propag. Mag., 40(3), 2734.
  • Ubeda, E., and J. Rius (2005), Mfie mom-formulation with curl-conforming basis functions and accurate kernel-integration in the analysis of perfectly conduction sharp-edged objects, Microwave Opt. Technol. Lett., 44(4), 354358.
  • Ubeda, E., and J. Rius (2006a), Advantages of rectangular and uniform-triangluar discretization on the scattering analysis of very small sharp-edged objects with the magnetic field integral equation, paper presented at National Radio Science Meeting, Int. Union of Radio Sci., Boulder, Colo.
  • Ubeda, E., and J. Rius (2006b), Novel monopolar mfie mom-discretization for the scattering analysis of small objects, IEEE Trans. Antennas Propag., 54(1), 5057.
  • Ubeda, E., and J. M. Rius (2008), Comments on “the use of curl-conforming basis functions for the magnetic-field integral equation,”, IEEE Trans. Antennas Propag., 56(7), 2142.
  • Vande Ginste, D., H. Rogier, D. D. Zutter, and F. Olyslager (2004), A fast multipole method for layered media based on the application of perfectly matched layers—The 2D case, IEEE Trans. Antennas Propag., 52(10), 26312640.
  • Vande Ginste, D., E. Michielssen, F. Olyslager, and D. D. Zutter (2006), An efficient perfectly layered matched layer based multilevel fast multipole algorithm for large planar microwave structures, IEEE Trans. Antennas Propag., 54(5), 15381548.
  • Vande Ginste, D., L. Knockaert, and D. D. Zutter (2009a), Error control in the perfectly matched layer based multilevel fast multipole algorithm, J. Comput. Phys., 228(13), 48114822.
  • Vande Ginste, D., E. Michielssen, F. Olyslager, and D. D. Zutter (2009b), A high-performance upgrade of the perfectly matched layer multilevel fast multipole algorithm for large planar microwave structues, IEEE Trans. Antennas Propag., 57(6), 17281739.
  • Velamparambil, S., and W. Chew (2005), Analysis and performance of a distributed memory multilevel fast multipole algorithm, IEEE Trans. Antennas Propag., 53(8), 27192727.
  • Wallen, H., and J. Sarvas (2005), Translation procedures for broadband mlfma, Prog. Electromagn. Res., 55, 4778.
  • Ylä-Oijala, P., S. P. Kiminki, and S. Järvenpää (2011), Calderón preconditioned surface integral equations for composite objects with junctions, IEEE Trans. Antennas Propag., 59(2), 546554.
  • Zhang, Y., T. Cui, W. Chew, and J.-S. Zhao (2003), Magnetic field integral equation at very low frequencies, IEEE Trans. Antennas Propag., 51(8), 18641871.