SEARCH

SEARCH BY CITATION

References

  • Beckmann, P., and A. Spizzichino (1963), The Scattering of Electromagnetic Waves From Rough Surfaces, Int. Ser. Monogr. Electromagn. Waves, vol. 4, Pergamon, New York.
  • Bourlier, C., G. Berginc, and J. Saillard (2002), One-and two-dimensional shadowing functions for any height and slope stationary uncorrelated surface in the monostatic and bistatic configurations, IEEE Trans. Antennas Propag., 50, 312324.
  • Braunisch, H., Y. Zhang, C. O. Ao, S. E. Shih, Y. E. Yang, K. H. Ding, and J. A. Kong (2000), Tapered wave with dominant polarization stat for all angles of incidence, IEEE Trans. Antennas Propag., 48, 10861096.
  • Chew, W., M. Tong, and B. Hu (2008), Integral Equation Methods for Electromagnetic and Elastic Waves, Morgan and Claypool, San Rafael, Calif.
  • Colton, D., and R. Kress (1983), Integral Equations in Scattering Theory, Wiley-Intersci., New York.
  • Elfouhaily, T., B. Chapron, K. Katsaros, and D. Vandemark (1997), A unified directional spectrum for long and short wind-driven waves, J. Geophys. Res., 102(C7), 15,78115,796.
  • Jandhyala, V., B. Shanker, E. Michielssen, and W. C. Chew (1998), Fast algorithm for the analysis of scattering by dielectric rough surfaces, J. Opt. Soc. Am. A, 15, 18771885.
  • Li, S. Q., C. H. Chan, M. Y. Xia, B. Zhang, and L. Tsang (2001), Multilevel expansion of the sparse-matrix canonical grid method for two-dimensional random rough surfaces, IEEE Trans. Antennas Propag., 47, 752763.
  • Martin, P. A., and P. Ola (1993), Boundary integral equations for the scattering of electromagnetic waves by a homogeneous dielectric obstacle, Proc. R. Soc. Edinburgh, 123A, 185208.
  • Marvin, A. M., and V. Celli (1994), Relation between the surface impedance and the extinction theorem on a rough surface, Phys. Rev. B, 50, 14,54614,553.
  • Maystre, D. (1983), Electromagnetic scattering from perfectly conducting rough surfaces in the resonance region, IEEE Trans. Antennas Propag., 31, 885895.
  • Nédélec, J. (2001), Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, Springer, New York.
  • Ong, T., V. Celli, and A. Marvin (1994), General relation between surface impedance and surface curvature, J. Opt. Soc. Am. A, 11, 759765.
  • Poggio, A., and E. Miller (1973), Integral equation solutions of three-dimensional scattering problems, in Computer Techniques for Electromagnetics, edited by R. Mittra, Permagon, Elmsford, N. Y.
  • Rao, S., D. Wilton, and A. Glisson (1982), Electromagnetic scattering by surfaces of arbitrary shape, IEEE Trans. Antennas Propag., 30, 409418.
  • Rice, S. (1951), Reflection of electromagnetic waves from slightly rough surfaces, Commun. Pure Appl. Math., 4(2–3), 351378.
  • Senior, T., and J. Volakis (1995), Approximate Boundary Conditions in Electromagnetics, Inst. of Eng. and Technol., Stevenage, U. K.
  • Soriano, G., and M. Saillard (2001), Scattering of electromagnetic waves from two-dimensional rough surfaces with impedance approximation, J. Opt. Soc. Am. A, 18, 124133.
  • Soriano, G., and M. Saillard (2003), Modelization of the scattering of electromagnetic waves from the ocean surface, Prog. Electromagn. Res., 10, 101128.
  • Soriano, G., M. Joelson, and M. Saillard (2006), Doppler spectra from a two-dimensional ocean surface at L-band, IEEE Trans. Geosci. Remote Sens., 44(9), 24302437.
  • Soriano, G., P. Spiga, and M. Saillard (2010), Low-grazing angles scattering of electromagnetic waves from one-dimensional natural surfaces: Rigorous and approximate theories, C. R. Phys., 11(1), 7786.
  • Spiga, P., G. Soriano, and M. Saillard (2008), Scattering of electromagnetic waves from rough surfaces: A boundary integral method for low-grazing angles, IEEE Trans. Antennas Propag., 56, 20432050.
  • Tatarskii, V., and M. Charnotskii (1998a), Universal behaviour of scattering amplitudes for scattering from a plane in an average rough surface for small grazing angles, Waves Random Complex Media, 8(1), 2940.
  • Tatarskii, V., and M. Charnotskii (1998b), On the universal behavior of scattering from a rough surface for small grazing angles, IEEE Trans. Antennas Propag., 46, 6772.
  • Toporkov, J. V., R. S. Awadallah, and G. S. Brown (1999), Issues related to the uses of a Gaussian-like incident field for low-grazing-angle scattering, J. Opt. Soc. Am. A, 16, 176186.
  • Torrungrueng, D., and J. T. Johnson (2001), The forward-backward method with a novel spectral acceleration algorithm (FB/NSA) for the computation of scattering from two-dimensional large-scale impedance random rough surface, Microwave Opt. Tech. Lett., 29, 232236.
  • Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao (2001), Scattering of Electromagnetic Waves: Numerical Simulations, Remote Sens. Ser., Wiley-Intersci., New York.
  • Voronovich, A. G. (1994), Wave Scattering From Rough Surfaces, Springer, Berlin.
  • Wagner, R. L., J. Song, and W. C. Chew (1997), Monte-Carlo simulation of electromagnetic scattering from two-dimensional random rough surfaces, IEEE Trans. Antennas Propag., 45, 235245.
  • West, J. (2003), On the control of edge diffraction in numerical rough surface scattering using resistive tapering, IEEE Trans. Antennas Propag., 51, 31803183.
  • Zhao, Z., L. Li, J. Smith, and L. Carin (2005), Analysis of scattering from very large three-dimensional rough surfaces using MLFMM and ray-based analyses, IEEE Trans. Antennas Propag., 47, 2030.