SEARCH

SEARCH BY CITATION

References

  • Acworth, R. I., and G. R. Dasey (2003), Mapping of the hyporheic zone around a tidal creek using a combination of borehole logging, borehole electrical tomography and cross-creek electrical imaging, New South Wales, Australia, Hydrogeol. J., 11(3), 368377, doi:10.1007/s10040-003-0258-4.
  • Archie, G. E. (1942), The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. Am. Inst. Min. Metall. Pet. Eng., 146, 5462.
  • Binley, A., and A. Kemna (2005), Electrical methods, in Hydrogeophysics, edited by Y. Rubin, and S. Hubbard, pp. 129156, doi:10.1007/1-4020-3102-5_5, Springer, New York.
  • Brown, D. J. (1960), Evaluation of earth samples from churn-drilled wells, Rep. HW-67415, 12 pp., General Electric Co. Hanford At. Products Oper., Richland, Wash.
  • Day-Lewis, F. D., K. Singha, and A. M. Binley (2005), Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations, J. Geophys. Res., 110, B08206, doi:10.1029/2004JB003569.
  • Day-Lewis, F. D., E. A. White, C. D. Johnson, and J. W. Lane Jr. (2006), Continuous resistivity profiling to delineate submarine groundwater discharge—Examples and limitations, Lead. Edge, 25, 724728, doi:10.1190/1.2210056.
  • de Groot-Hedlin, C., and S. Constable (1990), Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data, Geophysics, 55(12), 16131624, doi:10.1190/1.1442813.
  • Environmental Protection Agency (1996), Declaration of the record of decision for the 300-FF-1 and 300-FF-5 operable units, Washington, D. C..
  • Fritz, B. G., N. P. Kohn, T. J. Gilmore, D. McFarland, E. V. Arntzen, R. D. Mackley, G. W. Patton, D. P. Mendoza, and A. L. Bunn (2007), Investigation of the hyporheic zone at the 300 Area, Hanford site, Rep. PNNL-16805, Pac. Northwest Natl. Lab., Richland, Wash.
  • Hartman, M. J., L. F. Morasch, and W. D. Webber (2006), Hanford site groundwater monitoring for fiscal year 2005, Rep. PNNL-15070, Pac. Northwest Natl. Lab., Richland, Wash.
  • Henderson, R. D., F. D. Day-Lewis, and C. F. Harvey (2009), Investigation of aquifer-estuary interaction using wavelet analysis of fiber-optic temperature data, Geophys. Res. Lett., 36, L06403, doi:10.1029/2008GL036926.
  • Henderson, R. D., F. D. Day-Lewis, E. Abarca, C. F. Harvey, H. N. Karam, L. B. Liu, and J. W. Lane (2010), Marine electrical resistivity imaging of submarine groundwater discharge: sensitivity analysis and application in Waquoit Bay, Massachusetts, USA, Hydrogeol. J., 18, 173185, doi:10.1007/s10040-009-0498-z.
  • Kunk, J. R., and S. M. Narbutovskih (1993), Phase I summary of surface geophysical studies in the 300-FF-5 operable unit, Rep. WHC-SD-EN-TI-069, Westinghouse Hanford Co., Richland, Wash.
  • Lesmes, D. P., and K. M. Frye (2001), Influence of pore fluid chemistry on the complex conductivity and induced polarization responses of Berea sandstone, J. Geophys. Res., 106(B3), 40794090, doi:10.1029/2000JB900392.
  • Loke, M. H., R. I. Acworth, and T. Dahlin (2003), A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys, Explor. Geophys., 34, 182187, doi:10.1071/EG03182.
  • Mansoor, N., and L. Slater (2007), Aquatic electrical resistivity imaging of shallow-water wetlands, Geophysics, 72(5), F211F221, doi:10.1190/1.2750667.
  • Moffett, K. B., S. W. Tyler, T. Torgersen, M. Menon, J. S. Selker, and S. M. Gorelick (2008), Processes controlling the thermal regime of saltmarsh channel beds, Environ. Sci. Technol., 42(3), 671676, doi:10.1021/es071309m.
  • Revil, A., and P. J. W. Glover (1998), Nature of surface electrical conductivity in natural sands, sandstones, and clays, Geophys. Res. Lett., 25(5), 691694, doi:10.1029/98GL00296.
  • Schon, J. H. (1996), Physical Properties of Rocks: Fundamentals and Principles of Petrophysics, 600 pp., Pergamon, Oxford, U. K.
  • Selker, J. S., N. van De Giesen, M. Westhoff, W. Luxemburg, and M. B. Parlange (2006a), Fiber optics opens window on stream dynamics, Geophys. Res. Lett., 33, L24401, doi:10.1029/2006GL027979.
  • Selker, J. S., L. Thévenaz, H. Huwald, A. Mallet, W. Luxemburg, N. van de Giesen, M. Stejskal, J. Zeman, M. Westhoff, and M. B. Parlange (2006b), Distributed fiber-optic temperature sensing for hydrologic systems, Water Resour. Res., 42, W12202, doi:10.1029/2006WR005326.
  • Slater, L. (2007), Near surface electrical characterization of hydraulic conductivity: From petrophysical properties to aquifer geometries—A review, Surv. Geophys., 28(2–3), 169197, doi:10.1007/s10712-007-9022-y.
  • Slater, L., and D. Lesmes (2002a), Electrical-hydraulic relationships observed for unconsolidated sediments, Water Resour. Res., 38(10), 1213, doi:10.1029/2001WR001075.
  • Slater, L., and D. Lesmes (2002b), IP interpretation in environmental investigations, Geophysics, 67(1), 7788, doi:10.1190/1.1451353.
  • Tyler, S. W., J. S. Selker, M. B. Hausner, C. E. Hatch, T. Torgersen, C. E. Thodal, and S. G. Schladow (2009), Environmental temperature sensing using Raman spectra DTS fiber-optic methods, Water Resour. Res., 45, W00D23, doi:10.1029/2008WR007052.
  • Waichler, S. R., and S. B. Yabusaki (2005), Flow and transport in the Hanford 300 Area vadose zone-aquifer-river system, Rep. PNNL-15125, Pac. Northwest Natl. Lab., Richland, Wash.
  • Weller, A., L. Slater, S. Nordsiek, and D. Ntarlagiannis (2010), On the estimation of specific surface per unit pore volume from induced polarization: A robust empirical relation fits multiple datasets, Geophysics, in press.
  • Westinghouse Hanford Company (1993), Sampling and analysis of 300-FF-5 operable unit springs and near-shore sediments and river water, Richland, Wash.
  • White, M. D., and M. Oorstrom (2006), STOMP: Subsurface Transport Over Multiple Phases, version 4.0, Rep. PNNL-15782, Pac. Northwest Natl. Lab., Richland, Wash.
  • Williams, B. A., C. F. Brown, W. Um, M. J. Nimmons, R. E. Peterson, B. N. Bjornstad, D. C. Lanigan, R. J. Serne, F. A. Spane, and M. L. Rockhold (2007), Limited field investigation report for uranium contamination in the 300 Area, 300 FF-5 operable unit, Hanford site, Washington, Rep. PNNL-16435, Pac. Northwest Natl. Lab., Richland, Wash.