• ecohydrology;
  • root depth;
  • plant uptake;
  • transpiration;
  • soil moisture;
  • carbon

[1] The depth of plant roots depends on a variety of conditions, including soil properties, vegetation type, nutrient availability, and climate. A water-optimal root depth is determined by equating the marginal carbon cost of deeper roots with the benefit of those roots to continued transpiration. This work compares the effect of two bounding strategies of plant uptake, conservative and intensive, on the water-optimal root depth and the response of that depth to changes in precipitation. While there are some differences between the models, both indicate similar responses of root depth to climate. The deepest roots are found in climates for which precipitation and potential transpiration are approximately equal, and root depths are more sensitive to changes in precipitation depth than frequency under dry conditions and more sensitive to rainfall frequency when the climate is wet. For all climate conditions, the water-optimal root depth is deeper and mean transpiration is lower when plant uptake is represented by the conservative model. These results highlight the explanatory power of water with respect to root depth and identify potential effects of a changing climate.