SEARCH

SEARCH BY CITATION

References

  • Benke, K. K., K. E. Lowell, and A. J. Hamilton (2008), Parameter uncertainty, sensitivity analysis and prediction error in a water-balance hydrological model, Math. Comput. Modell., 47(11–12), 11341149.
  • Bormann, H. (2008), Sensitivity of a soil-vegetation-atmosphere-transfer scheme to input data resolution and data classification, J. Hydrol., 351(1–2), 154169.
  • Bouma, J. (1989), Using soil survey data for quantitative land evaluation, Adv. Soil Sci., 9, 177213.
  • Brooks, R. H., and A. T. Corey (1964), Hydraulic properties of porous media, Hydrol. Pap. 3, 27 pp., Colo. State Univ., Fort Collins.
  • Cornelis, W. M., J. Ronsyn, M. Van Meirvenne, and R. Hartmann (2001), Evaluation of pedotransfer functions for predicting the soil moisture retention curve, Soil Sci. Soc. Am. J., 65(3), 638648.
  • Cosby, B. J., G. M. Hornberger, R. B. Clapp, and T. R. Ginn (1984), A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils, Water Resour. Res., 20(6), 682690, doi:10.1029/WR020i006p00682.
  • Famiglietti, J. S., and E. F. Wood (1994), Multiscale modeling of spatially variable water and energy balance processes, Water Resour. Res., 30(11), 30613078, doi:10.1029/94WR01498.
  • Finke, P. A., J. H. M. Wösten, and M. J. W. Jansen (1996), Effects of uncertainty in major input variables on simulated functional soil behaviour, Hydrol. Processes, 10(5), 661669.
  • Grayson, R. B., I. D. Moore, and T. A. McMahon (1992), Physically based hydrologic modeling, 2. Is the concept realistic?, Water Resour. Res., 28(10), 26592666, doi:10.1029/92WR01259.
  • Gutmann, E. D., and E. E. Small (2005), The effect of soil hydraulic properties vs. soil texture in land surface models, Geophys. Res. Lett., 32(2), L02402, doi:10.1029/2004GL021843.
  • Hopmans, J. W., J. Simunek, N. Romano, and W. Durner (2002), Simultaneous determination of water transmission and retention properties. inverse methods., in Methods of Soil Analysis, Soil Sci. Soc. Am. Book Ser., Vol. 5, edited by J. H. Dane, and G. C. Topp, pp. 9631008, Soil Sci. Soc. Am., Madison, Wis.
  • Kaiser, K., and G. Guggenberger (2003), Mineral surfaces and soil organic matter, Eur. J. Soil Sci., 54(2), 219236.
  • Mayer, L. M., L. L. Schick, K. R. Hardy, R. Wagal, and J. McCarthy (2004), Organic matter in small mesopores in sediments and soils, Geochim. Cosmochim. Acta, 68(19), 38633872.
  • McBratney, A. B., B. Minasny, S. R. Cattle, and R. W. Vervoort (2002), From pedotransfer functions to soil inference systems, Geoderma, 109(1–2), 125152.
  • Meyer, P., M. Rockhold, and G. Gee (1997), Uncertainty analysis of infiltration and subsurface flow and transport for sdmp sites, Rep. NUREG/CR-6565, U.S. Nucl. Regul. Comm, Rockville, Md.
  • Minasny, B., and A. B. McBratney (2002), Uncertainty analysis for pedotransfer functions, Eur. J. Soil Sci., 53(3), 417429.
  • Nemes, A., D. J. Timlin, Y. A. Pachepsky, and W. J. Rawls (2009), Evaluation of the Rawls et al. (1982), pedotransfer functions for their applicability at the U.S. national ccale, Soil Sci. Soc. Am. J., 73(5), 16381645.
  • Pauwels, V.R.N., A. Balenzano, G. Satalino, H. Skriver, N.E.C. Verhoest, and F. Mattia (2009), Optimization of soil hydraulic model parameters using synthetic aperture radar data: An integrated multidisciplinary approach, IEEE Trans. Geosci. Remote Sens., 47(2), 455467.
  • Peters-Lidard, C. D., M. S. Zion, and E. F. Wood (1997), A soil-vegetation-atmosphere transfer scheme for modeling spatially variable water and energy balance processes, J. Geophys. Res., 102(D4), 43034324, doi:10.1029/96JD02948.
  • Rawls, W. J., and D. L. Brakensiek (1985), Prediction of soil water properties for hydrologic modelling, in Watershed Management in the Eighties, edited by E. Jones, and T. J. Ward, pp. 293299, Am. Soc. Civ. Eng., Proc. Symp., 30 April–1 May, Denver, Colo., Am. Soc. Civ. Eng., New York, N.Y.
  • Rawls, W. J., and D. L. Brakensiek (1989), Estimation of soil water retention and hydraulic properties, in Unsaturated flow in hydrologic modelling: Theory and practice, edited by H. Morel-Seytoux, pp. 275300, Kluwer Acad., Dordrecht.
  • Rawls, W. J., D. L. Brakensiek, and K. E. Saxton (1982), Estimation of soil water properties, Trans. Am. Soc. Agric. Eng., 25(5), 13161320.
  • Refsgaard, J. C., and B. Storm (1996), Construction, calibration and validation of hydrological models, in Distributed Hydrological Modelling, edited by M. A. Abott, and J. C. Refsgaard, pp. 4154, Kluwer, Dordrecht.
  • Samain, B., B. V. A. Ferket, W. Defloor, and V.R.N. Pauwels (2011), Estimation of catchment averaged sensible heat fluxes using a Large Aperture Scintillometer, Water Resour. Res., doi:10.1029/2009WR009032, in press.
  • Saxton, K. E., and W. J. Rawls (2006), Soil water characteristics estimates by texture and organic matter for hydrologic solutions, Soil Sci. Soc. Am. J., 70(5), 15691578.
  • Schaap, M. G., F. L. Leij, and M. T. van Genuchten (1998), Neural network analysis for hierarchical prediction of soil hydraulic properties, Soil Sci. Soc. Am. J., 62(4), 847855.
  • Sivapalan, M., K. Beven, and E. F. Wood (1987), On hydrologic similarity, 2. a scaled model for runoff prediction, Water Resour. Res., 23(12), 22662278.
  • Sleutel, S., S. De Neve, B. Singier, and G. Hofman (2006), Organic C levels in intensively managed arable soils – long-term regional trends and characterization of fractions, Soil Use Manage., 22(2), 188196.
  • Soet, M., and J.N.M. Stricker (2003), Functional behaviour of pedotransfer functions in soil water flow simulation, Hydrol. Processes, 17(8), 16591670.
  • Tietje, O., and V. Hennings (1996), Accuracy of the saturated hydraulic conductivity prediction by pedo-transfer functions compared to the variability within fao textural classes, Geoderma, 69(1–2), 7184.
  • Tietje, O., and M. Tapkenhinrichs (1993), Evaluation of pedo-transfer functions, Soil Sci. Soc. Am. J., 57(4), 10881095.
  • Twarakavi, N. K. C., J. Šimůnek, and M. G. Schaap (2009), Development of Pedotransfer Functions for Estimation of Soil Hydraulic Parameters using Support Vector Machines, Soil Sci. Soc. Am. J., 73(5), 14431452, doi:10.2136/sssaj2008.0021.
  • Twarakavi, N. K. C., J. Šimůnek, and M. G. Schaap (2010), Can texture-based classification optimally classify soils with respect to soil hydraulics?, Water Resour. Res., 46, W01501, doi:10.1029/2009WR007939.
  • Vachaud, G., and T. Chen (2002), Sensitivity of computed values of water balance and nitrate leaching to within soil class variability of transport parameters, J. Hydrol., 264(1–4), 87100.
  • van Genuchten, M. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44(5).
  • Vereecken, H., J. Feyen, J. Maes, and P. Darius (1989), Estimating the soil moisture retention characteristics from texture, bulk density and carbon content, Soil Sci., 148(6), 389403.
  • Vereecken, H., J. Maes, and J. Feyen (1990), Estimating unsaturated hydraulic conductivity from easily measured soil properties, Soil Sci., 141(1), 112.
  • Wagner, B., V. R. Tarnawski, V. Hennings, U. Muller, G. Wessolek, and R. Plagge (2001), Evaluation of pedo-tranfer functions for unsaturated soil hydraulic conductivity using an independent data set, Geoderma, 102(3–4), 275297.
  • Walker, W. E., P. Harremoës, J. Rotmans, J. P. van der Sluis, M. B. A. V. Asselt, P. Janssen, and M. P. K. V. Krauss (2003), Defining uncertainty: A conceptual basis for uncertainty management in model-based decision support, Integr. Assess., 4(1), 517.
  • Webb, T. H., and L. R. Lilburne (2005), Consequences of soil map unit uncertainty on environmental risk assessment, Aust. J. Soil Res., 43(2), 119126.
  • Wösten, J. H. M., A. Lilly, A. Nemes, and C. Le Bas (1999), Development and use of a database of hydraulic properties of European soils, Geoderma, 90(3–4), 169185.
  • Wösten, J. H. M., Y. A. Pachepsky, and W. J. Rawls (2001), Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics, J. Hydrol., 251(3-4), 123-150.