SEARCH

SEARCH BY CITATION

References

  • Bear, J. (1988), Dynamics of Fluids in Porous Media, 2nd ed., Dover Publ., New York.
  • Delfs, J.-O., U. Görke, and H.-J. Herbert (2010), Kopplung numerischer Modelle für C:HM-Transportprocesse, Abschlussber. GRS-251, GRS mbH, Germany.
  • Engesgaard, P., and K. Kipp (1992), A geochemical transport model for redox-controlled movement of mineral fronts in groundwater flow systems: A case of nitrate removal by oxidation of pyrite, Water Resour. Res., 28, 28292843.
  • Eriksson, G., K. Hack, and S. Petersen (1997), ChemApp—A programmable thermodynamic calculation interface, in Werkstoff Woche 1996, Symposium 8, Simulation, Modellierung, Informationssysteme, edited by J. Hirsch, DGM, Informationsgesellschaft-Verlag, Frankfurt, Germany.
  • Grevel, K. D., and Majzlan J. (2009), Internally consistent thermodynamic data for magnesium sulfate hydrates, Geochim. Cosmochim. Acta, 73, 68056815.
  • GTT-Technologies (2006), ChemApp - The Thermochemistry, Library for your Software, Programmer's Manual Edition 3.10 for ChemApp Versions 2.0.2 through 5.4.4, Herzogenrath, Germany.
  • Harvie, C. E., N. Møller, and J. H. Weare (1984), The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C, Geochim. Cosmochim. Acta, 48, 723751.
  • Herbert, H. J. (2000), Zur Geochemie und geochemischen Modellierung hochsalinarer Lösungen mineralischer Rohstoffe, Geologisches Jahrbuch (Sonderhefte), Reihe D, Heft SD1, Stuttgart, Germany.
  • Hummel, W., U. Berner, E. Curti, F. Pearson, and T. Thoenen (2002), NAGRA/PSI Thermochemical, database 01/01, Univ. Publ., Boca Raton, Fla.
  • Karpov, I. K., K. V. Chudnenko, D. A. Kulik, O. V. Avchenko, and V. A. Bychinski (2001), Minimization of Gibbs free energy in geochemical systems by convex programming, Geochem. Int., 39, 11081119.
  • Kolditz, O. (1995), Modelling of flow and heat transfer in fractured rock: Conceptual model of a 3-D deterministic fracture network, Geothermics, 24, 451470.
  • Kolditz, O., and J. de Jonge (2004), Non-isothermal two-phase flow in low-permeable porous media, Comput. Mech., 33, 345364.
  • Koukkari, P., and R. Pajarre (2006), Introducing mechanistic kinetics to the Lagrangian Gibbs energy calculation, Comput. Chem. Eng., 30, 11891196.
  • Lichtner, P. (1985), Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems, Geochim. Cosmochim. Acta, 49, 779800.
  • Lichtner, P. (1988), The quasi-stationary state approximation to coupled mass transport and fluid-rock interaction in a porous medium, Geochim. Cosmochim. Acta, 52, 143165.
  • Liu, C., and T. Narasimhan (1989), Redox-controlled multiple species reactive chemical transport, 1. Model development, Water Resour. Res., 25, 869882.
  • Mariner, P. (2005), In-drift precipitates/salt model, in Report ANL-EBS-MD-000045 REV, 02, Bechtel SAIC Company, Las Vegas, Nev.
  • Mayer, K. U., E. O. Frind, and D. W. Blowes (2002), Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions, Water Resour. Res., 38(9), 1174, doi:10.1029/2001WR000862.
  • Nienhuis, P., C. A. T. Appelo, and A. Willemsen (1991), Program PHREEQM, Modified from PHREEQE for Use in Mixing Cell Flow Tube, Amsterdam Free Univ., Netherlands.
  • Noorishad, J., C. Carnahan, and L. Benson (1987), Development of the non-equilibrium reactive chemical transport code CHEMTRNS, Rep. LBL-22361, Lawrence Berkeley Lab., Univ. of Calif., Berkeley, Calif.
  • Ortoleva, P., E. Merino, and J. Chadam (1987), Geochemical self-organization, 2. Reaction-transport feedbacks and modeling approach, Am. J. Sci., 287, 9791007.
  • Parkhurst, D., and C. Appelo (1999), User's guide to PHREEQC (Version 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, Rep. 99-4259, U.S. Geol. Surv., Denver, Colo.
  • Pitzer, K. (1973), Thermodynamics of electrolytes. 1. Theoretical basis and general equations, J. Phys. Chem., 77, 268277.
  • Pitzer, K. (1975), Thermodynamics of electrolytes. 5. Effects of higher-order electrostatic terms, J. Solut. Chem., 4, 249265.
  • Pitzer, K. (1991), Activity Coefficients in Electrolyte Solutions, 2nd ed., CRC Press, Boca Raton, Fla.
  • Pitzer, K., and J. Kim (1974), Thermodynamics of electrolytes. 4. Activity and osmotic coefficients for mixed electrolytes, J. Am. Chem. Soc., 96, 57015707.
  • Prommer, H. (2002), A reactive multicomponent transport model for saturated porous media. Draft of users manual version 1.0, report, Contam. Land Assess. and Remediation Res. Cent., Univ. of Edinburgh, Scotland, U. K.
  • Regenspurg, S., T. Wiersberg, W. Brandt, E. Huenges, A. Saadat, K. Schmidt, and G. Zimmermann (2010), Geochemical properties of saline geothermal fluids relevant for long term energy provision on the example of the in-situ geothermal laboratory groß schönebeck (Germany), Chemie der Erde, 70, 312.
  • Shao, H., O. Kolditz, D. A. Kulik, W. Pfingsten, and G. Kosakowski (2009), Reactive transport of multiple non-ideal solid solutions, Appl. Geochem., 24, 12871300.
  • Simunek, J., and D. L. Suares (1994), Two-dimensional transport model for variably saturated porous media with major ion chemistry, Water Resour. Res., 30, 11151133.
  • Smith, W., and R. Missen (1991), Chemical Reaction Equilibrium Analysis: Theory and Algorithms, Krieger Publ., Malabar, Fla.
  • Steefel, C. I., and A. C. Lasaga (1994), A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with applications to reactive flow in single phase hydrothermal system, Am. J. Sci., 294, 529592.
  • Steefel, C. I., and K. T. B. MacQuarrie (1996), Approches to modelling reactive transport in porous media, in Reactive Transport in Porous Media, Reviews in Mineralogy, vol. 34, edited by P. C. Lichtner, C. I. Steefel, and E. H. Oelkers, pp. 83129, Mineral. Soc. of Am., Washington, D. C.
  • Vaniman, D. T., D. L. Bish, S. J. Chipera, C. I. Fialips, J. W. Carey, and W. C. Feldman (2004), Magnesium sulphate salts and the history of water on mars, Nature, 431, 663665.
  • Wang, W., and O. Kolditz (2007), Object-oriented finite element analysis of thermo-hydro-mechanical (THM) problems in porous media, Int. J. Numer. Methods Eng., 69, 162201, doi:10.1002/nme.1770.
  • Wang, W., M. Datcheva, T. Schanz, and O. Kolditz (2006), A sub-stepping approach for elasto-plasticity with rotational hardening, Comput. Mech., 37, 266-278. doi:10.1007/s00466-005-0710-5.
  • Wang, W., G. Kosakowski, and O. Kolditz (2009), A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media, Comput. Geosci., 35, 16311641.
  • Wolery, T. (1992), EQ3NR, a computer program for geochemical aqueous speciation-soluability calculations:theoretical manual, users guide, and related documentation (version 7.0), Tech. Rep. UCRL-MA-110662 PT IV, Lawrence Livermore Natl. Lab., Livermore, Calif.
  • Xie, M., S. Bauer, O. Kolditz, T. Nowak, and H. Shao (2006), Numerical simulation of reactive processes in an experiment with partially saturated bentonite, J. Contam. Hydrol., 83, 122147.
  • Xie, M., H. Moog, W. Wang, H. J. Herbert, H. Shao, and O. Kolditz (2007), Reactive transport modelling in salt material based on Gibbs energy minimization, in The Mechanical Behaviour of Salt: Understanding of THMC Processes, in Proceedings of the 6th Conference on the Mechanical Behaviour of “saltmech6,”, edited by M. Wallner et al., pp. 277284, Taylor and Francis Group, London.
  • Xu, T., and K. Pruess (2001), Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: 1. Methodology, Am. J. Sci., 301, 1633.
  • Yeh, G., and V. Tripathi (1991), A model for simulating transport of reactive multispecies components: Model development and demonstration, Water Resour. Res., 27, 30753094.
  • Zhang, C.-L., T. Rothfuchs, and J. Droste (2007), Post-tests on thermo-mechanically compacted salt backfill, in The Mechanical Behaviour of Salt: Understanding of THMC Processes, in Proceedings of the 6th Annual Conference. On the Mechanical Behaviour of “saltmech6,” edited by M. Wallner et al., pp. 209214, Taylor and Francis Group, London.
  • Zhang, G., Z. Zheng, and J. Wan (2005), Modeling reactive geochemical transport of concentrated aqueous solutions, Water Resour. Res., 41, W02018, doi:10.1029/2004WR003097.