SEARCH

SEARCH BY CITATION

References

  • Blum, A. E., and L. L. Stillings (1995), Feldspar dissolution kinetics, in Reviews in Mineralogy and Geochemistry, edited by A. F. White, and S. L. Brantley, vol. 31, pp. 291351, Mineralogical Society of America, Washington, DC.
  • Bond, D. L., J. A. Davis, and J. M. Zachara (2008), Uranium(VI) release from contaminated vadose zone sediments: Estimation of potential contributions from dissolution and desorption, in Adsorption of Metals to Geomedia II, edited by M.O. Barnett, and D. B. Kent, chap. 14, pp. 375416, Elsevier, Amsterdam, Netherlands.
  • Catalano, J. G., J. P. Mckinley, J. M. Zachara, S. C. Smith, and G. E. J. Brown (2006), Changes in uranium speciation through a depth sequence of contaminated Hanford sediment, Environ. Sci. Technol., 40, 25172524.
  • Conant, B.Jr., J. A. Cherry, and R. W. Gillham (2004), A PCE groundwater plume discharging to a river: Influence of the streambed and near-river zone on contaminant distributions, J. Contam. Hydrol., 73, 249279.
  • Crowley, K. D., and J. F. Ahearne (2002), Managing the environmental legacy of U.S. nuclear-weapons production, Am. Sci., 90, 514523.
  • Culver, T. B., S. P. Hallisey, D. Sahoo, J. J. Deitsch, and J. A. Smith (1997), Modeling the desorption of organic contaminants from long-term contaminated soil using distributed mass transfer rates, Environ. Sci. Technol., 31(6), 15811588.
  • Davis, J. A., and D. B. Kent (1990), Surface complexation modeling in aqueous geochemistry, in Mineral-Water Interface Geochemistry, Reviews in Mineralogy, edited by M. F. Hochella, and A. F. White, pp. 177260, Mineralogical Society of America, Washington, D. C.
  • Davis, J. A., J. A. Coston, D. B. Kent, and C. C. Fuller (1998), Application of the surface complexation concept to complex mineral assemblages, Environ. Sci. Technol., 32, 28202828.
  • Davis, J. A., D. E. Meece, M. Kohler, and G. P. Curtis (2004), Approaches to surface complexation modeling of Uranium(VI) adsorption on aquifer sediments, Geochim. Cosmochim. Acta, 68(18), 36213641.
  • Dong, W., and S. C. Brooks (2006), Determination of the formation constants of ternary complexes of uranyl and carbonate with alkaline earth metal (Mg2+, Ca2+, Sr2+, and Ba2+) using anion exchange method, Environ. Sci. Technol., 40, 46894695.
  • Fritz, B. G., and E. V. Arntzen (2007), Effect of rapidly changing river stage on uranium flux through the hyporheic zone, Ground Water, 45(6), 753760.
  • Greskowiak, J., H. Prommer, C. Liu, V. E. A. Post, R. Ma, C. Zheng, and J. M. Zachara (2010), Comparison of parameter sensitivities between a laboratory and field scale model of uranium transport in a dual domain, distributed-rate reactive system, Water Resour. Res., 46, W09509, doi:10.1029/2009WR008781.
  • Guillaumount, R., T. Fanghänet, V. Neck, J. Fuger, D. A. Palmer, I. Grenthe, and M. H. Rand (2003), Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, Elsevier, Amsterdam, Netherlands.
  • Haggerty, D. R., and P. Reeves (2002), STAMMT-L 1.0 User's Manual, ERMS #520308, 76 pp., Sandia National Laboratories, Albuquerque, NM.
  • Haggerty, R., and S. M. Gorelick (1998), Modeling mass transfer processes in soil columns with pore-scale heterogeneity, Soil Sci. Soc. Am. J., 62(1), 6274.
  • Hammond, G. E., and P. C. Lichtner (2010), Field-scale model for the natural attenuation of uranium at the Hanford 300 Area using high performance computing, Water Resour. Res., 46, W09527 doi:10.1029/2009WR008819.
  • Hammond, G. E., P. C. Lichtner, R. T. Mills, and C. Lu (2008), Toward petascale computing in geosciences: Application to the Hanford 300 Area, J. Phys. Conf. Ser., 125, 012051 doi:10.1088/1742-6596/125/1/012051.
  • Herbelin, A. L., and J. C. Westall (1999), FITEQL: A computer program for the determination of chemical equilibrium constants from experimental data, Chemistry Department, Oregon State University, Corvallis, Oregon.
  • Jacobs, L. A., H. R. von Gunten, R. Keil, and M. Kuslys (1988), Geochemical changes along a river-groundwater infiltration flow path: Glattfelden, Switzerland, Geochim. Cosmochim. Acta, 52(11), 26932706.
  • Kohler, M., D. P. Curtis, D. E. Meece, and J. A. Davis (2004), Methods for estimating adsorbed uranium (VI) and distribution coefficients of contaminated sediments, Environ. Sci. Technol., 38, 240247.
  • Lindberg, J. W., and R. E. Peterson (2004), 300-FF-5 operable unit, in Hanford Site Groundwater Monitoring for Fiscal Year 2004, PNNL-15070, edited by M. J. Hartman, L. F. Morasch, and W. D. Webber, pp. 2.12-12.12-31, Pacific Northwest National Laboratory, Richland, Washington.
  • Liu, C., J. M. Zachara, O. Qafoku, J. P. McKinley, S. M. Heald, and Z. Wang (2004), Dissolution of uranyl microprecipitates from subsurface sediments at Hanford site, USA, Geochim. Cosmochim. Acta, 68(22), 45194537.
  • Liu, C., J. M. Zachara, W. Yantansee, P. D. Majors, and J. P. McKinley (2006), Microscopic reactive diffusion of uranium in the contaminated sediments at Hanford, USA, Water Resour. Res., 42, W12420, doi:10.1029/2006WR005031.
  • Liu, C., J. M. Zachara, N. P. Qafoku, and Z. Wang (2008), Scale-dependent desorption of uranium from contaminated subsurface sediments, Water Resour. Res., 44, W08413, doi:10.1029/2007WR006478.
  • Liu, C., Z. Shi, and J. M. Zachara (2009), Kinetics of uranium(VI) desorption from contaminated sediments: Effect of geochemical conditions and model evaluation, Environ. Sci. Technol., 43(17), 65606566.
  • Ma, R., C. Zheng, H. Prommer, J. Greskowiak, C. Liu, J. M. Zachara, and M. L. Rockhold (2010), A field-scale reactive transport model for U(VI) migration influenced by coupled multi-rate mass transfer and surface complexation reactions, Water Resour. Res., 46, W05509, doi:10.1029/2009WR008168.
  • Mason, C. F., W. R. Turney, B. M. Thomson, N. Lu, P. A. Longmire, and C. J. Chisholm-Brause (1997), Carbonate leaching of uranium from contaminated soils, Environ. Sci. Technol., 31(10), 27072711, doi:10.1021/es960843j.
  • McKinley, J. P., J. M. Zachara, C. Liu, S. C. Heald, B. I. Prenitzer, and B. W. Kempshall (2006), Microscale controls on the fate of contaminant uranium in the vadose zone, Hanford Site, Washington, Geochim. Cosmochim. Acta, 70, 18731887.
  • National Research Council (2000), Research Needs in Subsurface Science, U.S. Department of Energy's Environmental Management Science Program, 159 pp., National Academy Press, Washington, DC.
  • Parkhurst, D., and C. A. J. Appelo (1999), User's guide to PHREEQC (Version 2) – A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geol. Surv. Water Resour. Invest. Rep., 99-4259.
  • Pedit, J. A., and C. T. Miller (1994), Heterogeneous sorption processes in subsurface systems. 1. Model formulations and applications, Environ. Sci. Technol., 28(12), 20942104.
  • Prommer, H., D. A. Barry, and C. Zheng (2003), MODFLOW/MT3DMS based reactive multicomponent transport modeling, Ground Water, 41(2), 247257.
  • Qafoku, N. P., J. M. Zachara, C. Liu, P. L. Gassman, O. S. Qafoku, and S. C. Smith (2005), Kinetic desorption and sorption of U(VI) during reactive transport in a contaminated Hanford sediment, Environ. Sci. Technol., 39, 31573165.
  • Turner, G. D., J. M. Zachara, J. P. McKinley, and S. C. Smith (1996), Surface charge properties and UO22+ adsorption of a subsurface smectite, Geochim. Cosmochim. Acta, 60, 33993414.
  • von Gunten, H. R., G. Karametaxas, U. Krähenbuhl, M. Kuslys, R. Giovanoli, E. Hoehn, and R. Keil (1991), Seasonal biogeochemical cycles in riverborne groundwater, Geochim. Cosmochim. Acta, 55(12), 35973609.
  • Wellman, D. M., J. M. Zachara, C. Liu, N. P. Qafoku, S. C. Smith, and S. W. Forrester (2008), Advective desorption of Uranium(VI) from contaminated Hanford vadose zone sediments under saturated and unsatureated conditions, Vadose Zone J., 7(4), 11441159.
  • Zachara, J. M., J. A. Davis, C. Liu, J. P. McKinley, N. P. Qafoku, D. M. Wellman, and S. B. Yabusaki (2005), Uranium Geochemistry in Vadose Zone and Aquifer Sediments from the 300 Area Uranium Plume, PNNL-15121, Pacific Northwest National Laboratory, Richland, WA.
  • Zheng, C., and P. Wang (1999), MT3DMS, A modular three-dimensional multi-species transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems; documentation and user's guide, 202 pp., U.S. Army Engineer Research and Development Center Contract Rep. SERDP-99-1, Vicksburg, MS.