SEARCH

SEARCH BY CITATION

References

  • Andrieu, C., A. Doucet, and R. Holenstein (2010), Particle Markov chain Monte Carlo methods, J. Royal Stat. Soc. B,72(3), 269342.
  • Árnason, S. (2005), Estimating nonlinear hydrological rating curves and discharge using the Bayesian approach, M.S. thesis, Fac. of Eng., Univ. of Iceland.
  • Arulampalam, S. M., S. Maskell, N. Gordon, and T. Clapp (2002), A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal Process., 50, 174188.
  • Berger, O. B. (1985), Statistical Decision Theory and Bayesian Analysis, 2nd ed., Springer-Verlag, New York.
  • Burkham, D. E., and D. R. Dawdy (1970), Error analysis of streamflow data for an alluvial stream, U.S. Geol. Prof. Pap. 655-C.
  • Carlin, B. P., N. G. Polson, and D. S. Stoffer (1992), A Monte Carlo approach to nonnormal and nonlinear state-space modeling, J. Am. Stat. Assoc., 87, 493500.
  • Di Baldassarre, G., and A. Montanari (2009), Uncertainty in river discharge observations: A quantitative analysis, Hydrol. Earth Syst. Sci., 13, 913921, doi:10.5194/hess-13-913-2009.
  • Geyer, C. J. (1991), Markov chain Monte Carlo maximum likelihood, in Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface, edited by E. M. Keramides, pp. 156163, Interface Found., Fairfax Station, Va.
  • Gordon, N. J., D. J. Salmond, and A. F. M. Smith (1993), A novel approach to non-linear and non-Gaussian Bayesian state estimation, IEE Proc., Part F, 140, 107113.
  • Herschy, R. W. (1995), Streamflow Measurement, 2nd ed., E & FN Spon, London.
  • International Standards Organization (1998), Determination of the stage-discharge relation, Stand. ISO 1100/2, Geneva, Switzerland.
  • Kitagawa, G. (1996), Monte Carlo filter and smoother for non-Gaussian nonlinear state space models, J. Comput. Graph. Stat., 5, 125.
  • Knighton, A. D. (1998), Fluvial Forms and Processes: A New Perspective, Edward Arnold, London.
  • Kuczera, G. (1996), Correlated measurement error in flood frequency inference, Water Resour. Res.,32, 21192128.
  • Lang, M., K. Probanz, B. Renard, E. Renouf, and E. Sauquet (2010), Extrapolation of rating curves by hydraulic modeling, with application to flood frequency analysis, Hydrol. Sci. J., 55, 883898.
  • Leonard, J., M. Mietton, H. Najib, and P. Gourbesville (2000), Rating curve modeling with Manning's equation to manage instability and improve extrapolation, Hydrol. Sci. J., 45, 739750.
  • Maskell, S., M. Rollason, N. Gordon, and D. Salmond (2003), Efficient particle filtering for multiple target tracking with application to tracking in structured images, Image Vision Comput., 21, 931939.
  • McMillan, H., F. Pappenberger, J. Freer, T. Krueger, and M. Clark (2010), Impacts of uncertain river flow data on rainfall-runoff model calibration and discharge predictions, Hydrol. Processes, 24, 12701284.
  • Melcher, N. B., and J. F. Walker (1991), Evaluation of selected methods for determining streamflow during periods of ice effect, U.S. Geol. Surv. Water Supply Pap., 2378.
  • Moyeed, R. A., and R. T. Clarke (2005), The use of Bayesian methods for fitting rating curves, with case studies, Adv. Water Resour., 28, 807818.
  • Petersen-Øverleir, A. (2004), Accounting for heteroscedasticity in rating curve estimates, J. Hydrol. Eng., 292, 173181.
  • Petersen-Øverleir, A. (2008), The net effect of sample variability and rating curve imprecision in regional flood frequency analysis, in Northern hydrology and its global role: Proceedings of the XXV Nordic hydrological conference, edited by O. G. Sveinsson et al., pp. 266274, Nordic Hydrologic Programme, Reykjavik, Iceland.
  • Petersen-Øverleir, A., and T. Reitan (2009), Accounting for rating curve imprecision in flood frequency analysis using likelihood-based methods, J. Hydrol., 366, 89100.
  • Pitt, M. K. (2002), Smooth particle filters for likelihood evaluation and maximisation, Tech. Rep. no. 651, Dept. Econ., Univ. Warwick, Coventry.
  • Potter, K. W., and J. F. Walker (1985), An empirical study of flood measurement error, Water Resour. Res., 21, 403406.
  • Rantz, S. E., et al., (1982), Measurement and computation of streamflow, vol. 2, Computation of discharge, U.S. Geol. Surv. Water Supply Pap., 2175.
  • Reitan, T., and A. Petersen-Øverleir (2008), Bayesian power-law regression with a location parameter, with applications for construction of discharge rating curves, Stochastic Environ. Res. Risk Assess., 22, 351365, doi:10.1007/s00477-007-0119-0.
  • Reitan, T., and A. Petersen-Øverleir (2009), Bayesian methods for estimating multi-segment discharge rating curves, Stochastic Environ. Res. Risk Assess., 23, 627642, doi:10.1007/s00477-008-0248-0.
  • Renard, B., D. Kavetski, G. Kuczera, M. Thyer, and S. W. Franks (2010), Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors, Water Resour. Res., 46, W05521, doi:10.1029/2009WR008328.
  • Roberts, G. O., A. Gelman, and W. R. Gilks (1997), Weak convergence and optimal scaling of random walk Metropolis algorithms, Ann. Appl. Probab., 7, 110120.
  • Schumm, S. A. (1977), The Fluvial System, John Wiley, New York.
  • Taylor, H. M., and S. Karlin (1998), An Introduction to Stochastic Modeling, 3rd ed., Academic, San Diego, Calif.
  • Venetis, C. (1970), A note on the estimation of the parameters in logarithmic stage-discharge relationships with estimates of their error, Bull. Int. Assoc. Sci. Hydrol., 15, 105111.
  • Whitfield, P. H., and M. Hendrata (2006), Assessing detectability of change in low flows in future climates from stage-discharge measurements, Can. Water Resour. J., 31, 112.