SEARCH

SEARCH BY CITATION

References

  • Abdel-Salam, A., and C. V. Chrysikopoulos (1995a), Analysis of a model for contaminant transport in fractured media in the presence of colloids, J. Hydrol., 165, 261281.
  • Abdel-Salam, A., and C. V. Chrysikopoulos (1995b), Modeling of colloid and colloid-facilitated contaminant transport in a two-dimensional fracture with spatially variable aperture, Transp. Porous Media, 20(3), 197221.
  • Akbour, R. A., J. Douch, M. Hamdani, and P. Schmitz (2002), Transport of kaolinite colloids through quartz sand: Influence of humic acid, Ca2+, and trace metals, J. Colloid Interface Sci., 253, 18.
  • Anders, R., and C. V. Chrysikopoulos (2005), Virus fate and transport during artificial recharge with recycled water, Water Resour. Res., 41, W10415, doi:10.1029/2004WR003419.
  • Artinger, R., T. Rabung, J. I. Kim, S. Sachs, K. Schmeide, K. H. Heise, G. Bernhard, and H. Nitsche (2002), Humic colloid-borne migration of uranium in sand columns, J. Contam. Hydrol., 58, 112.
  • Auset, M., A. A. Keller, F. Brissaud, and V. Lazarova (2005), Intermittent filtration of bacteria and colloids in porous media, Water Resour. Res., 41, W09408, doi:10.1029/2004WR003611.
  • Barton, C. D., and A. D. Karathanasis (2003), Influence of soil colloids on the migration of atrazine and zinc through large soil monoliths, Water Air Soil Pollut., 14, 321.
  • Bear, J. (1979), Hydraulics of Groundwater, McGraw-Hill, New York.
  • Becker, M. W., S. A. Collins, D. W. Metge, R. W. Harvey, and A. M. Shapiro (2004), Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater, J. Contam. Hydrol., 69, 195213.
  • Bekhit, H. M., and A. E. Hassan (2007), Subsurface contaminant transport in the presence of colloids: Effect of nonlinear and nonequilibrium interactions, Water Resour. Res., 43, W08409, doi:10.1029/2006WR005418.
  • Bekhit, H. M., M. A. El-Kordy, and A. E. Hassan (2009), Contaminant transport in groundwater in the presence of colloids and bacteria: Model development and verification, J. Contam. Hydrol., 108, 152167.
  • Bolster, C. H., B. Z. Haznedaroglu, and S. L. Walker (2009), Diversity in cell properties and transport behavior among 12 different environmental Escherichia coli isolates, J. Environ. Qual., 38, 465472.
  • Bradford, S. A., M. Bettahar, J. Simunek, and M. T. Genuchten (2004), Straining and attachment of colloids in physically heterogeneous porous media, Vadose Zone J., 3, 384394.
  • Camesano, T., and B. Logan (1998), Influence of fluid velocity and cell concentration on the transport of motile and nonmotile bacteria in porous media, Environ. Sci. Technol., 32, 16991708.
  • Camesano, T., K. M. Unice, and B. Logan (1999), Blocking and ripening of colloids in porous media and their implications for bacterial transport, Colloids Surf. A, 160, 291308.
  • Camper, A. K., J. T. Hayes, P. J. Sturman, W. L. Jones, and A. B. Cunningham (1993), Effects of motility and adsorption rate coefficient on transport of bacteria through saturated porous media, Appl. Environ. Microbiol., 59, 34553462.
  • Choi, N. H., D. J. Kim, and S. B. Kim (2007), Quantification of bacterial mass recovery as a function of pore-water velocity and ionic strength, Res. Microbiol., 158, 7078.
  • Chrysikopoulos, C. V., and A. Abdel-Salam (1997), Modeling colloid transport and deposition in saturated fractures, Colloids Surf. A, 121, 189202.
  • Chrysikopoulos, C. V., and Y. Sim (1996), One-dimensional virus transport homogeneous porous media with time dependent distribution coefficient, J. Hydrol., 185, 199219.
  • Chrysikopoulos, C. V., C. Masciopinto, R. La Mantia, and I. D. Manariotis (2010), Removal of biocolloids suspended in reclaimed wastewater by injection in a fractured aquifer model, Environ. Sci. Technol., 44(3), 971977.
  • Compere, F., G. Porel, and F. Delay (2001), Transport and retention of clay particles in saturated porous media: Influence of ionic strength and pore velocity, J. Contam. Hydrol., 49, 121.
  • Corapcioglu, M. Y., and S. Kim (1995), Modeling facilitated contaminant transport by mobile bacteria, Water Resour. Res., 31, 26392647.
  • Dabros, T., and T. G. M. van de Ven (1982), Kinetics of coating by colloid particles, J. Colloid Interface Sci., 89, 232244.
  • de Jonge, L. W., P. Moldrup, G. H. Rubæk, K. Schelde, and J. Djurhuus (2004), Particle leaching and particle-facilitated transport of phosphorous at the field scale, Vadose Zone J., 3, 462470.
  • Dong, H., T. D. Scheibe, W. P. Johnson, C. M. Monkman, and M. E. Fuller (2006), Change of collision efficiency with distance in bacterial transport experiments, Ground Water, 44, 415429.
  • Fontes, D. E., A. L. Mills, G. M. Hornberger, and J. S. Herman (1991), Physical and chemical factors influencing transport of microorganisms through porous media, Appl. Environ. Microbiol., 57, 24732481.
  • Foppen, J. W. A., and J. F. Schijven (2005), Transport of E. coli in columns of geochemically heterogeneous sediment, Water Res., 39, 30823088.
  • Gannon, J. T., V. B. Manilal, and M. Alexander (1991), Relationships between cell surface properties and transport of bacteria through soil, Appl. Environ. Microbiol., 57, 190193.
  • Gear, C. W. (1971), The automatic integration of ordinary differential equations, Commun. ACM, 14, 176179.
  • Harter, T., S. Wagner, and E. R. Atwill (2000), Colloid transport and filtration of Cryptosporidium parvum in sandy soils and aquifer sediments, Environ. Sci. Technol., 34, 6270.
  • Hendry, M. J., J. R. Lawrence, and P. Maloszewski (1999), Effect of velocity on the transport of two bacteria through saturated sand, Ground Water, 37, 103112.
  • Ho, Y. S., J. C. Y. Ng, and G. McKay (2001), Removal of lead(II) from effluents by sorption on peat using second-order kinetics, Sep. Sci. Technol., 36, 241261.
  • James, S. C., and C. V. Chrysikopoulos (1999), Transport of polydisperse colloid suspensions in a single fracture, Water Resour. Res., 35(3), 707718.
  • James, S. C., and C. V. Chrysikopoulos (2003), Effective velocity and effective dispersion coefficient for finite-sized particles flowing in a uniform fracture, J. Colloid Interface Sci., 263, 288295.
  • James, S. C., T. K. Bilezikjian, and C. V. Chrysikopoulos (2005), Contaminant transport in a fracture with spatially variable aperture in the presence of monodisperse and polydisperse colloids, Stochastic Environ. Res. Risk Assess., 19(4), 266279, doi:10.1007/s00477-004-0231-3.
  • Jewett, D. G., T. A. Hilbert, B. E. Logan, R. G. Arnold, and R. C. Bales (1995), Bacterial transport in laboratory columns and filters: Influence of ionic strength and pH on collision efficiency, Water Res., 29, 16731680.
  • Jiang, D., Q. Huang, P. Cai, X. Rong, and W. Chen (2007), Adsorption of Pseudomonas putida on clay minerals and iron oxide, Colloids Surf. B, 54, 217221.
  • Keller, A. A., S. Sirivithayapakorn, and C. V. Chrysikopoulos (2004), Early breakthrough of colloids and bacteriophage MS2 in a water-saturated sand column, Water Resour. Res., 40, W08304, doi:10.1029/2003WR002676.
  • Kersting, A. B., D. W. Efurd, D. L. Finnegan, D. J. Rokop, D. K. Smith, and J. L. Thompson (1999), Migration of plutonium in groundwater at the Nevada test site, Nature, 397, 5659.
  • Kim, S. B., S. J. Park, C. G. Lee, N. C. Choi, and D. J. Kim (2008), Bacteria transport through goethite-coated sand: Effects of solution pH and coated sand content, Colloids Surf. B, 63, 236242.
  • Kretzschmar, R., and H. Sticher (1997), Transport of humic-coated iron oxide colloids in a sandy soil: Influence of Ca2+ and trace metals, Environ. Sci. Technol., 31, 34973504.
  • Leon-Morales, C. F., A. P. Leis, M. Strathmann, and H. C. Flemming (2004), Interactions between laponite and microbial biofilms in porous media: Implications for colloid transport and biofilm stability, Water Res., 38, 36143626.
  • Lindqvist, R., and C. G. Enfield (1992), Biosorption of dichlorodiphenyltri-chloroethane and hexachlorobenzene in groundwater and its implications for facilitated transport, Appl. Environ. Microbiol., 58, 22112218.
  • Liu, D., P. R. Johnson, and M. Elimelech (1995), Colloid deposition dynamics in flow through porous media: Role of electrolyte concentration, Environ. Sci. Technol., 29, 29632973.
  • Liu, Z., and K. Papadopoulos (1995), Chemotaxis in near-linear gradients of chemoattractants, Appl. Environ. Microbiol., 61, 35673572.
  • Masciopinto, C., R. La Mantia, and C. V. Chrysikopoulos (2008), Fate and transport of pathogens in a fractured aquifer in the Salento area, Italy, Water Resour. Res., 44, W01404, doi:10.1029/2006WR005643.
  • Maxwell, R. M., C. Welty, and R. W. Harvey (2007), Revisiting the Cape Cod bacteria injection experiment using a stochastic modeling approach, Environ. Sci. Technol., 41, 55485558.
  • Mibus, J., S. Sachs, W. Pfingsten, C. Nebelung, and G. Bernhard (2007), Migration of uranium(IV)/(VI) in the presence of humic acids in quartz sand: A laboratory column study, J. Contam. Hydrol., 89, 199217.
  • Newman, M. E., A. W. Elzerman, and B. B. Looney (1993), Facilitated transport of selected metals in aquifer material packed columns, J. Contam. Hydrol., 14, 233246.
  • Ouyang, Y., D. Shinde, R. S. Mansell, and W. Harris (1996), Colloid-enhanced transport of chemicals in subsurface environments: A review, Crit. Rev. Environ. Sci. Technol., 26, 189.
  • Pang, L., and J. Simunek (2006), Evaluation of bacteria-facilitated cadmium transport in gravel columns using HYDRUS colloid-facilitated solute transport model, Water Resour. Res., 42, W12S10, doi:10.1029/2006WR004896.
  • Pang, L., M. Noonan, M. Flintoft, and P. van den Brink (2005), A laboratory study of bacteria-facilitated cadmium transport in alluvial gravel aquifer media, J. Environ. Qual., 34, 237247.
  • Petzold, L. R. (1983), A description of DASSL A differential/algebraic system solver, in Scientific Computing, edited by R. S. Stepleman, pp. 651, North Holland, Amsterdam.
  • Powelson, D. K., and A. L. Mills (2001), Transport of Escherichia coli in sand columns with constant and changing water contents, J. Environ. Qual., 30, 238245.
  • Redman, J. A., S. L. Walker, and M. Elimelech (2004), Bacterial adhesion and transport in porous media: Role of the secondary energy minimum, Environ. Sci. Technol., 38, 17771785.
  • Rickwood, D., T. Ford, and J. Graham (1982), Nycodenz: A new nonionic iodinated gradient medium, Anal. Biochem., 123, 2331.
  • Rijnaarts, H. H. M., W. Norde, E. J. Bouwer, J. Lyklema, and A. J. B. Zehnder (1996), Bacterial deposition in porous media related to the clean bed collision efficiency and to substratum blocking by attached cells, Environ. Sci. Technol., 30, 28692876.
  • Rong, X., Q. Huanga, X. He, H. Chen, P. Cai, and W. Liang (2008), Interaction of Pseudomonas putida with kaolinite and montmorillonite: A combination study by equilibrium adsorption, ITC, SEM and FTIR, Colloids Surf. B, 64, 4955.
  • Rong, X., W. Chen, Q. Huang, P. Cai, and W. Liang (2010), Pseudomonas putida adhesion to goethite: Studied by equilibrium adsorption, SEM, FTIR and ITC, Colloids Surf. B, 80, 7985.
  • Saiers, J. E., and G. M. Hornberger (1996), The role of colloidal kaolinite in the transport of cesium through laboratory sand columns, Water Resour. Res., 32(1), 3341.
  • Severino, G., V. Cvetkovic, and A. Coppola (2007), Spatial moments for colloid-enhanced radionuclide transport in heterogeneous aquifers, Adv. Water Res., 30, 101112.
  • Shiratori, K., Y. Yamashita, and Y. Adachi (2007), Deposition and subsequent release of Na-kaolinite particles by adjusting pH in the column packed with Toyoura sand, Colloids Surf. A, 306, 137141.
  • Sim, Y., and C. V. Chrysikopoulos (1995), Analytical models for one-dimensional virus transport in saturated porous media, Water Resour. Res., 31(5), 14291437. (Correction, Water Resour. Res., 32(5), 1473, 1996.).
  • Simoni, S. F., H. Harms, T. N. P. Bosma, and A. J. B. Zehnder (1998), Population heterogeneity affects transport of bacteria through sand columns at low flow rates, Environ. Sci. Technol., 32, 21002105.
  • Smith, J., B. Gao, H. Funabashi, T. N. Tran, D. Luo, B. A. Ahner, T. S. Steenhuis, A. G. Hay, and M. T. Walter (2008), Pore-scale quantification of colloid transport in saturated porous media, Environ. Sci. Technol., 42, 517523.
  • Stephan, E. A., and G. G. Chase (2001), A preliminary examination of zeta potential and deep bed filtration activity, Sep. Purif. Technol., 21, 219226.
  • Stevik, T. K., K. Aa, G. Ausland, and J. F. Hanssen (2004), Retention and removal of pathogenic bacteria in wastewater percolating through porous media: A review, Water Res., 38, 13551367.
  • Syngouna, V. I., and C. V. Chrysikopoulos (2010), Interaction between viruses and clays in static and dynamic batch systems, Environ. Sci. Technol., 44, 45394544.
  • Tan, Y., J. T. Gannon, P. Baveye, and M. Alexander (1994), Transport of bacteria in aquifer sand: Experiments and model simulations, Water Resour. Res., 30, 32433252.
  • Tatalovich, M. E., K. Y. Lee, and C. V. Chrysikopoulos (2000), Modeling the transport of contaminants originating from the dissolution of DNAPL pools in aquifers in the presence of dissolved humic substances, Transp. Porous Media, 38(1/2), 93115.
  • Tien, N. C., and C. P. Jen (2007), Analytical modeling for colloid-facilitated transport of N-member radionuclides chains in the fractured rock, Nucl. Sci. Tech., 18(6), 336343.
  • Tong, M., X. Li., C. N. Brow, and W. P. Johnson (2005), Detachment-influenced transport of an adhesion-deficient bacterial strain within water-reactive porous media, Environ. Sci. Technol., 39, 25002508.
  • Upadhyayula, V. K. K., S. Deng, G. B. Smith, and M. C. Mitchell (2009), Adsorption of Bacillus subtilis on single-walled carbon nanotube aggregates, activated carbon and NanoCeram, Water Res., 43, 148156.
  • Villholth, K. G., N. J. Jarvis, O. H. Jacobsen, and H. de Jonge (2000), Field investigations and modeling of particle-facilitated pesticide transport in microporous soil, J. Environ. Qual., 29, 12981309.
  • Yates, M. V., C. P. Gerba, and L. M. Kelly (1985), Virus persistence in groundwater, Appl. Environ. Microbiol., 49, 778781.
  • Walshe, G. E., L. Pang, M. Flury, M. E. Close, and M. Flintoft (2010), Effects of pH, ionic strength, dissolved organic matter, and flow rate on the co-transport of MS2 bacteriophages with kaolinite in gravel aquifer media, Water Res., 44, 12551269.