SEARCH

SEARCH BY CITATION

References

  • Belmans, C., J. G.Wesseling, and R. A.Feddes (1983), Simulation of the water balance of a cropped soil, SWATRE, J. Hydrol., 63, 271286.
  • Bosch, D. D. (1991), Error associated with point observation of matric potential in heterogeneous soil profiles, Trans. ASAE, 34(6), 24272436.
  • Brooks, R. H., and A. T.Corey (1964), Hydraulic properties of porous media, Hydrol. Pap. 3, 27 pp., Colo. State Univ., Fort Collins, Colo.
  • Carroll, D. L. (1996), Genetic Algorithms and optimizing chemical oxygen-Iodine lasers, in Developments in Theoretical and Applied Mechanics, Vol. 18, edited by H. B.Wilson et al., pp. 411424, Sch. of Eng., Univ. of Ala., Tuscaloosa.
  • Das, N. N., and B. P.Mohanty (2006), Root zone soil moisture assessment using passive microwave remote sensing and vadose zone modeling, Vadose Zone J., 5, 296307.
  • Feddes, R. A., P. J.Kowalik, and H.Zarandy (1978), Simulation of field water use and crop yield, Simul. Monogr., Pudoc.Wageningen, Netherlands.
  • Gardner, W. R. (1958), Some steady state solutions of unsaturated moisture flow equations with application from a water table, Soil Sci., 85, 228232.
  • Goldberg, D. E. (1989), Genetic algorithms in search and optimization and machine learning, Addison-Wesley Publ., Reading, MA.
  • Goldberg, D. E. (2002), The Design of Innovation: Lessons From and for Competent Genetic Algorithms, Kluwer Acad., Norwell, Mass.
  • Green, R. E., L. R.Ahuja, and S. K.Chong (1986), Hydraulic conductivity, diffusivity, and sorptivity of unsaturated soils: Field methods, in Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, edited by A.Klute, Monogr. Am. Soc. Agron., 9, 771798.
  • Hansen, J. D., Rojas, K. W. and M. J.Schaffer (1999), Calibrating the root zone water quality model, Agron. J., 91, 171177.
  • Heathman, G. C., P. J.Starks, L. R.Ahuja, and T. J.Jackson (2003), Assimilation of surface soil moisture to estimate soil water content, J. Hydrol., 279: 117, doi:10.1016/S0022-1694(03)00088-X.
  • Holland, J. H. (1975), On quantifying agricultural and water management practices from low spatial resolution RS data using genetic algorithms: a numerical study for mixed pixel environment, Adv. Water Resour., 28, 856870.
  • Ines, A. V. M., and P.Droogers (2002), Inverse modeling in estimating soil hydraulic functions: A genetic algorithm approach, Hydrol. Earth Syst. Sci., 6(1), 4965.
  • Ines, A. V. M., and K.Honda (2005), On quantifying agricultural and water management practices from low spatial resolution RS data using genetic algorithms: A numerical study for mixed pixel environment, Adv. Water Resour., 28, 856870.
  • Ines, A. V. M., and B. P.Mohanty (2008a), Near-surface soil moisture assimilation for quantifying effective soil hydraulic properties using genetic algorithm: 1. Conceptual modeling, Water Resour. Res., 44, W06422, doi:10.1029/2007WR005990.
  • Ines, A. V. M., and B. P.Mohanty (2008b), Near-surface soil moisture assimilation for quantifying effective soil hydraulic properties under different hydro-climatic conditions, Vadose Zone J., 7, 3952.
  • Ines, A. V. M., and B. P.Mohanty (2009), Near-surface soil moisture assimilation for quantifying effective soil hydraulic properties using genetic algorithm: 2. With airborne remote sensing during SGP97 and SMEX02, Water Resour. Res., 45, W01408, doi:10.1029/2008WR007022.
  • Jana, R. B., and B. P.Mohanty (2012a), A topography-based scaling algorithm for soil hydraulic parameters at hillslope scales: Field testing, Water Resour. Res., 48, W02519, doi:10.1029/2011WR011205.
  • Jana, R. B., and B. P.Mohanty (2012b), A comparative study of multiple approaches to soil hydraulic parameter scaling applied at the hillslope scale, Water Resour. Res., 48, W02520, doi:10.1029/2010WR010185.
  • Krishnakumar, K. (1989), Microgenetic algorithms for stationary and nonstationary function optimization, in Proc. SPIE: Intelligent Control and Adaptive System, vol. 1196, edited by G.Rodriguez, pp. 289296, SPIE, Philadelphia, Pa.
  • Leij, F. J., W. J.Alves, M. T.Van Genuchten, and J. R.Williams (1999), The UNSODA unsaturated soil hydraulic database, in Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media, edited by M. T.Van Genuchten, F. J.Leij, and L.Wu, pp. 12691281, Univ. of Calif., Riverside, Calif.
  • Mallants, D., B. P.Mohanty, D.Jacques, and J.Feyen (1996), Spatial variability of hydraulic properties in a multi-layered soil, Soil Sci., 161(3), 167181.
  • Mohanty, B. P., and J.Zhu (2007), Effective soil hydraulic parameters in horizontally and vertically heterogeneous soils for steady-state land-atmosphere interaction, J. Hydrometeorol., 8, 715729.
  • Mohanty, B. P., R. S.Kanwar and C. J.Everts (1994), Comparison of saturated hydraulic conductivity measurement methods for a glacial till soil, Soil Sci. Soc. Am. J., 58(3), 672677.
  • Mohanty, B. P., P. J.Shouse, D. A.Miller, and M. T.vanGenuchten (2002), Soil property database: Southern Great Plains 1997 Hydrology Experiment, Water Resour. Res., 38(5), 1047, doi:10.1029/2000WR000076.
  • Mualem, Y. (1976), A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12, 513522.
  • Nielsen, D. R., J. W.Biggar, and K. T.Her (1973), Spatial variability of field measured soil-water properties, Hilgardia, 42, 215259.
  • Rose, C. W., W. R.Stern, and J. E.Drummond (1965), Determination of hydraulic conductivity as a function of depth and water content for soil in situ, Aust. J. Soil Res., 3, 19.
  • Stockton, J. G., and A. W.Warrick (1971), Spatial variability of unsaturated hydraulic conductivity, Soil Sci. Soc. Am. J., 35, 847848.
  • vanBavel, C. H. M., G. B.Stirk, and K. J.Brust (1968), Hydraulic properties of a clay loam soil and the field measurement of water uptake by roots: I. Interpretation of water content and pressure profiles, Soil Sci. Soc. Am. Proc., 32, 310317.
  • vanDam, J. C. (2000), Field-scale water flow and solute transport. SWAP model concepts, parameter estimation and case studies, Ph.D. thesis, Wageningen Univ., Wageningen, Netherlands.
  • vanDam, J. C., J.Huygen, J. G.Wesseling, R. A.Feddes, P.Kabat, P. E. V.vanWaslum, P.Groenendjik, and C. A.vanDiepen (1997), Theory of SWAP version 2.0: Simulation of water flow and plant growth in the soilwater-atmosphere-plant environment, Tech. Doc. 45, DLO Winand Staring Cent., Wageningen Agric. Univ., Wageningen, Netherlands.
  • vanGenuchten, M. T. (1980), A closed-form equation foe predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892898.
  • Vrugt, J. A., G.Schoups, J. W.Hopmans, C.Young, W. W.Wallender, and W.Bouten (2004), Inverse modeling of large-scale spatially distributed vadose zone properties using global optimization, Water Resour. Res., 40, W06503, doi:10.1029/2003WR002706.
  • Wood, E. F. (1994), Scaling, soil moisture and evapotranspiration in runoff models, Adv. Water Resour., 17, 2434.
  • Zhu, J., and B. P.Mohanty (2002), Upscaling of hydraulic properties for steady state evaporation and infiltration, Water Resour. Res., 38(9), 1178, doi:10.1029/2001WR000704.
  • Zhu, J., and B. P.Mohanty (2003), Upscaling of hydraulic properties in heterogeneous soils, in Scaling Methods in Soil Physics, edited by Y.Pachepsky, D. E.Radcliffe, and H. M.Selim, pp. 97117, CRC Press, Boca Raton, Fla.
  • Zhu, J., and B. P.Mohanty (2004), Soil hydraulic parameter upscaling for steady-state flow with root water uptake, Vadose Zone J., 3, 14641470.
  • Zhu, J., and B. P.Mohanty (2006), Effective scaling factors for transient infiltration in heterogeneous soils, J. Hydrol., 319, 96108.
  • Zhu, J., B. P.Mohanty, A. W.Warrick, and M. T.vanGenuchten (2004), Correspondence and upscaling of hydraulic functions for steady-state flow in heterogeneous soils, Vadose Zone J., 3, 527533.
  • Zhu, J., B. P.Mohanty, and N. N.Das (2006), On the effective averaging schemes of hydraulic properties at the landscape scale, Vadose zone J., 5, 308316.