SEARCH

SEARCH BY CITATION

References

  • Abbott, M. B., J. A. Bathurst, and P. E. Cunge (1986), An introduction to the European Hydrological System-Systeme Hydrologicque Europeen “SHE” 2: Structure of a physically based distributed modeling system, J. Hydrol., 87, 6177.
  • Aizinger, V., and C. Dawson (2002), A discontinuous Galerkin method for two-dimensional flow and transport in shallow water, Adv. Water Resour., 25, 6784.
  • Alcrudo, F., and P. Garcia-Navarro (1993), A high-resolution Godunov-type scheme in finite volumes for the 2D shallow-water equations, Int. J. Numer. Methods Fluids, 16, 489505.
  • Ambrosi, D. (1995), Approximation of shallow water equations by Roe's Riemann solver, Int. J. Numer. Methods Fluids, 20, 157168.
  • Anastasiou, K. and C. T. Chan (1997), Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes, Int. J. Numer. Methods Fluids, 24, 12251245.
  • Begnudelli, L., and B. F. Sanders (2006), Unstructured grid finite volume algorithm for shallow-water flow and scalar transport with wetting and drying, J. Hydraul. Eng., 132, 371384.
  • Bellos, C., and V. Hrissanthou (1998), Numerical simulation of sediment transport following a dam break, Water Resour. Manage., 12, 397407.
  • Bellos, C. V., J. V. Soulis, and J. G. Sakkas (1992), Experimental investigation of two-dimensional dam-break induced flows, J. Hydraul. Res., 30, 4763.
  • Bennett, J. P. (1974), Concepts of mathematical modeling of sediment yield, Water Resour. Res., 10, 485492.
  • Bhatt, G., M. Kumar, and C. J. Duffy (2008), Bridging gap between geohydrologic data and Integrated Hydrologic Model: PIHMgis, paper presented at iEMSs 2008 International Congress on Environmental Modelling and Software, Barcelona.
  • Bradford, S. F., and B. F. Sanders (2002), Finite-volume model for shallow-water flooding of arbitrary topography, J. Hydraul. Eng., 128, 289298.
  • Caleffi, V., A. Valiani, and A. Zanni (2003), Finite volume method for simulating extreme flood events in natural channels, J. Hydraul. Res., 41, 167177.
  • Cao, Z., G. Pender, S. Wallis, and P. Carling (2004), Computational dam-break hydraulics over erodible sediment bed, J. Hydraul. Eng., 130, 689703.
  • Capart, H., and D. L. Young (1998), Formation of a jump by the dam-break wave over a granular bed, J. Fluid Mech., 372, 165187.
  • Castro Diaz, M. J., E. D. Fernandez-Nieto, and A. M. Ferreiro (2008), Sediment transport models in shallow water equations and numerical approach by high order finite volume methods, Comput. Fluids, 37, 299316.
  • Cohen, S. D., and A. C. Hindmarsh (1994), CVODE user guide, Tech. Rep. UCRL-MA-118618, Lawrence Livermore Natl. Lab., Berkeley, Calif.
  • diGiammarco, P., E. Todini, and P. Lamberti (1996), A conservative finite elements approach to overland flow: The control volume finite element formulation, J. Hydrol., 175, 267291.
  • Fagherazzi, S., and T. Sun (2003), Numerical simulations of transportation cyclic steps, Comput. Geosci., 29, 11431154.
  • Fennema, R. J., and M. H. Chaudhry (1990), Explicit methods for 2D transient free-surface flows, J. Hydraul. Eng., 116, 10131034.
  • Fraccarollo, L., and H. Capart (2002), Riemann wave description of erosional dam-break flows, J. Fluid Mech., 461, 183228.
  • Fraccarollo, L., H. Capart, and Y. Zech (2003), A Godunov method for the computation of erosional shallow water transients, Int. J. Numer. Methods Fluids, 41, 951976.
  • Goutal, N. (1999), The Malpasset dam failure—An overview and test case definition, paper presented at the 4th CADAM meeting, CADAM, Zaragoza, Spain, 1819 Nov.
  • Harten, A., and J. M. Hyman (1983), Self-adjusting grid for one dimensional hyperbolic conservation laws, J. Comput. Phys., 50, 235269.
  • Henderson, F. M. (1966), Open Channel Flow, MacMillan, New York.
  • Hervouet, J. M. (2000), A high resolution 2-D dam-break model using parallelization, Hydrol. Processes, 14, 22112230.
  • Hervouet, J. M., and A. Petitjean (1999), Malpasset dam-break revisited with two-dimensional computations, J. Hydraul. Res., 37, 777788.
  • Hindmarsh, A. C., and R. Serban (2005), User documentation for CVODE v2.3.0, Rep. UCRL-SM-208108, Cent. for Appl. Sci. Comput., Lawrence Livermore Natl. Lab., Berkeley, Calif.
  • Hubbard, M. E. (1999), Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids, J. Comput. Phys., 155, 5474.
  • Hudson, J., and P. K. Sweby (2003), Formulations for numerically approximating hyperbolic systems governing sediment transport, J. Sci. Comput., 19, 225252.
  • Hudson, J., and P. K. Sweby (2005), A high-resolution scheme for the equations governing 2D bed-load sediment transport, Int. J. Numer. Methods Fluids, 47, 10851091.
  • Jawahar, P., and H. Kamath (2000), A high-resolution procedure for Euler and Navier-Stokes computations on unstructured grids, J. Comput. Phys., 164, 165203.
  • Katopodes, N., and T. Strelkoff (1978), Computing two-dimensional dam-break flood waves, J. Hydraul. Div. Am. Soc. Civ. Eng., 104, 12691288.
  • Kumar, M., G. Bhatt, and C. J. Duffy (2008), An efficient domain decomposition framework for accurate representation of geodata in distributed hydrologic models, Int. J. Geogr. Inf. Sci., 23, 15691596.
  • LeVeque, R. J. (2002), Finite Volume Methods forHyperbolic Problems, 535 pp., Cambridge Univ. Press, Cambridge, Mass.
  • Liu, X., B. J. Landry, and M. H. García (2008), Two-dimensional scour simulations based on coupled model of shallow water equations and sediment transport on unstructured meshes, Coastal Eng., 55, 800810.
  • Loukili, Y., and A. Soulaimani (2007), Numerical tracking of shallow water waves by the unstructured finite volume WAF approximation, Int. J. Comput. Methods Eng., 8, 7588.
  • Martin, N., and S. M. Gorelick (2005), A MATLAB surface fluid flow model for rivers and streams, Comput. Geosci., 31, 929946.
  • Molls, T., and M. H. Chaudhry (1995), Depth averaged open channel flow model, J. Hydraul. Eng., 121, 453465.
  • Nash, J. E., and J. V. Sutcliffe (1970), River flow forecasting through conceptual models part I—A discussion of principles, J. Hydrol., 10, 282290.
  • Ottevanger, W. (2005), Discontinuous finite element modeling of river hydraulics and morphology, M.S. thesis, Univ. of Twente, Enschede, Netherlands.
  • Panday, S., and P. Huyakorn (2004), A fully-coupled physically-based spatially distributed model for evaluating surface/subsurface flow, Adv. in Water Resour., 27, 361382.
  • Qu, Y., and C. J. Duffy (2007), A semidiscrete finite volume formulation for multiprocess watershed simulation, Water Resour. Res., 43, W08419, doi:10.1029/2006WR005752.
  • Roache, P. J. (1994), Perspective: A method for uniform reporting of grid refinement studies, J. Fluids Eng., 116, 405413.
  • Roe, P. L. (1981), Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 357372.
  • Rosatti, G., and L. Fraccarollo (2006), A well-balanced approach for flows over mobile-bed with high sediment-transport, J. Comput. Phys., 220, 312338.
  • Shewchuk, J. R. (1997), Delaunay refinement mesh generation, Ph.D. thesis, Carnegie Mellon Univ., Pittsburgh, Pa.
  • Shu, C. W., and S. Osher (1988), Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Phys., 77, 439471.
  • Simpson, G., and S. Castelltort (2006), Coupled model of surface water flow, sediment transport and morphological evolution, Comput. Geosci., 32, 16001614.
  • Sleigh, P. A., M. Berzins, P. H. Gaskell, and N. G. Wright (1998), An unstructured finite-volume algorithm for predicting flow in rivers and estuaries, Comput. Fluids, 27, 479508.
  • Soares Frazão, S., F. Alcrudo, and N. Goutal (1999), Dam-break test cases summary, paper presented at 4th CADAM Meeting, CADAM, Zaragoza, Spain, 1819 Nov.
  • Toro, E. F. (1999), Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, New York.
  • Toro, E. F. (2001), Shock-Capturing Methods for Free-Surface Shallow Flows, John Wiley, Chichester, U. K.
  • Valiani, A., V. Caleffi, and A. Zanni (2002), Case study: Malpasset dam-break simulation using a two-dimensional finite volume method, J. Hydraul. Eng., 128, 460472.
  • VanderKwaak, J. (1999), Numerical simulation of flow and chemical transport in integrated surface-subsurface hydrologic systems, Ph.D. thesis in Earth Sciences, Univ. of Waterloo, Waterloo, Ont., Canada.
  • Wang, J. W., and R. X. Liu (2000), A comparative study of finite volume methods on unstructured meshes for simulation of 2D shallow water wave problems, Math. Comput. Simul., 53, 171184.
  • Wu, W., and S. Wang (2007), One-dimensional modeling of dam-break flow over movable beds, J. Hydraul. Eng., 133, 4858.
  • Yoon, T. H., and S. K. Kang (2004), Finite volume model for two-dimensional shallow water flows on unstructured grids, J. Hydraul. Eng., 130, 678688.
  • Zhao, D. H., H. W. Shen, G. Q. Tabios III, J. S. Lai, and W. Y. Tan (1994), Finite-volume two-dimensional unsteady-flow model for river basins, J. Hydraul. Eng., 120, 863883.