SEARCH

SEARCH BY CITATION

References

  • Anagnostou, E. N., C. A. Morales, and T. Dinku (2001), The use of TRMM precipitation radar observations in determining ground radar calibration biases, J. Atmos. Ocean. Technol., 18(4), 616628.
  • Bocchiola, D. (2007), Use of scale recursive estimation for assimilation of precipitation data from TRMM (PR and TMI) and NEXRAD, Adv. Water Resour., 30(11), 23542372.
  • Bocchiola, D., and R. Rosso (2006), The use of scale recursive estimation for short term quantitative precipitation forecast, Phys. Chem. Earth, 31(18), 12281239.
  • Chou, K. C., A. S. Willsky, and R. Nikoukhah (1994), Multiscale Systems, Kalman Filters, and Riccati-Equations, IEEE Trans. Autom. Control, 39(3), 479492.
  • Cosgrove, B. A., et al. (2003), Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project, J. Geophys. Res., 108(D22), 8842, doi:10.1029/2002JD003118.
  • DelGreco, S., D. Kim, and B. R. Nelson (2005), Operational Issues from NCDC Perspective, in Q2 - Next Generation QPE and QPF Workshop, Norman, Okla.
  • de Vyver, H. V., and E. Roulin (2009), Scale-recursive estimation for merging precipitation data from radar and microwave cross-track scanners, J. Geophys. Res., 114, D08104, doi:10.1029/2008JD010709.
  • Farina, A., F. C. Morabito, S. Serpico, and G. Simone (2001), Fusion of radar images: State of art and perspective, paper presented at CIE International Conference on Radar, Inst. of Electr. and Electron. Eng., Beijing.
  • Gorenburg, I. P., D. McLaughlin, and D. Entekhabi (2001), Scale-recursive assimilation of precipitation data, Adv. Water Resour., 24(9-10), 941953.
  • Grimes, D. I. F., E. Pardo-Iguzquiza, and R. Bonifacio (1999), Optimal areal rainfall estimation using raingauges and satellite data, J. Hydrol., 222(1–4), 93108.
  • Gupta, R., V. Venugopal, and E. Foufoula-Georgiou (2006), A methodology for merging multisensor precipitation estimates based on expectation-maximization and scale-recursive estimation, J. Geophys. Res., 111, D02102, doi:10.1029/2004JD005568.
  • Kannan, A., M. Ostendorf, W. C. Karl, D. A. Castanon, and R. K. Fish (2000), ML parameter estimation of a multiscale stochastic process using the EM algorithm, IEEE Trans. Sig. Proc., 48(6), 18361840.
  • Krajewski, W. F., G. Villarini, and J. A. Smith (2010), Radar-rainfall uncertainties where are we after thirty years of effort?, Bull. Am. Meteorol. Soc., 91(1), 87.
  • Kumar, P. (1999), A multiple scale state-space model for characterizing subgrid scale variability of near-surface soil moisture, IEEE Trans. Geosci. Remote Sens., 37(1), 182197.
  • Nounou, M. N. (2006), Enhanced state estimation using multiscale Kalman filtering, paper presented at 45th Conference on Decision and Control, Inst. of Electr. and Electron. Eng., San Diego, Calif.
  • Parada, L. M., and X. Liang (2004), Optimal multiscale Kalman filter for assimilation of near-surface soil moisture into land surface models, J. Geophys. Res., 109, D24109, doi:10.1029/2004JD004745.
  • Parada, L. M., and X. Liang (2008), Impacts of spatial resolutions and data quality on soil moisture data assimilation, J. Geophys. Res., 113, D10101, doi:10.1029/2007JD009037.
  • Seo, D. J. (1998a), Real-time estimation of rainfall fields using radar rainfall and rain gage data, J. Hydrol., 208(1–2), 3752.
  • Seo, D. J. (1998b), Real-time estimation of rainfall fields using rain gage data under fractional coverage conditions, J. Hydrol., 208(1–2), 2536.
  • Seo, D. J., J. P. Breidenbach, and E. R. Johnson (1999), Real-time estimation of mean field bias in radar rainfall data, J. Hydrol., 223(3–4), 131147.
  • Simone, G., F. C. Morabito, and A. Farina (2000), Radar image fusion by multiscale Kalman filtering, paper presented at Third International Conference on Information Fusion, Inst. of Electr. and Electron. Eng., Paris.
  • Slatton, K. C., M. Crawford, and B. L. Evans (2001), Multiscale adaptive estimation for fusing interferometric radar and laser altimeter data, paper presented at International Geoscience and Remote Sensing Symposium, Inst. of Electr. and Electron. Eng., Sydney, N. S. W., Australia.
  • Slatton, K. C., M. Crawford, and L. Teng (2002), Multiscale fusion of INSAR data for improved topographic mapping, paper presented at International Geoscience and Remote Sensing Symposium, Inst. of Electr. and Electron. Eng., Toronto, Ont., Canada.
  • Smith, J. A., D. J. Seo, M. L. Baeck, and M. D. Hudlow (1996), An intercomparison study of NEXRAD precipitation estimates, Water Resour. Res., 32(7), 20352045. doi:10.1029/96WR00270.
  • Sorooshian, S., K. L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite (2000), Evaluation of PERSIANN system satellite-based estimates of tropical rainfall, Bull. Am. Meteorol. Soc., 81(9), 20352046.
  • Tustison, B., E. Foufoula-Georgiou, and D. Harris (2002), Scale-recursive estimation for multisensor Quantitative Precipitation Forecast verification: A preliminary assessment, J. Geophys. Res., 108(D8), 8377, doi:10.1029/2001JD001073.
  • Walker, J. P., and P. R. Houser (2004), Requirements of a global near-surface soil moisture satellite mission: accuracy, repeat time, and spatial resolution, Adv. Water Resour., 27(8), 785801.
  • Willsky, A. S. (2002), Multiresolution Markov models for signal and image processing, Proc. IEEE, 90(8), 13961458.
  • Zhou, Y. H., D. McLaughlin, D. Entekhabi, and G. H. C. Ng (2008), An ensemble multiscale filter for large Nonlinear data assimilation problems, Mon. Weather Rev., 136(2), 678698.