SEARCH

SEARCH BY CITATION

References

  • Abriola, L. M. (1989), Modeling multiphase migration of organic chemicals in groundwater systems—A review and assessment, Environ. Health Perspec., 83, 117143.
  • Adamson, D. R., D. Y. Lyon, and J. B. Hughes (2004), Flux and product distribution during biological treatment of tetrachloroethene dense non-aqueous phase liquid, Environ. Sci. Technol., 39(7), 20212028, doi:10.1021/es034737a.
  • al-Raoush, R. I. and, C. S. Willson (2005), A pore-scale investigation of multiphase porous media system, J. Contam. Hydrol., 77(1–2), 6789, doi:10.1016/j.jconhyd.2004.12.001.
  • Alvarez, N. J., L. M. Walker, and S. L. Anna (2010), Diffusion-limited adsorption to a spherical geometry: The impact of curvature and competitive time scales, Phys. Rev. E, 82(1), 011604, doi:10.1103/PhysRevE.82.011604.
  • Amos, B. K., J. A. Christ, L. M. Abriola, K. D. Pennell, and F. E. Löffler (2007), Experimental evaluation and mathematical modeling of microbially enhanced tetrachloroethene (PCE) dissolution, Environ. Sci. Technol., 41(3), 963970. doi:10.1021/es061438n.
  • Amos, B. K., E. J. Suchomel, K. D. Pennell, and F. E. Löffler (2008), Microbial activity and distribution during contaminant dissolution from a NAPL source zone, Water Res., 42(12), 29632974, doi:10.1016/j.watres.2008.03.015.
  • Annable, M. D., P. S. C. Rao, K. Hatfield, W. D. Graham, A. L. Wood, and C. G. Enfield (1998), Partitioning tracers for measuring residual NAPL: field-scale test results, J. Environ. Eng., 124(6), 498503.
  • Bear, J. (1972), Dynamics of Fluids in Porous Media, Dover, New York.
  • Brenner, H. (1962), The diffusion model of longitudinal mixing in beds of finite length—Numerical values, Chem. Eng. Sci., 17(4), 229243.
  • Brusseau, M. L. (1992), Rate-limited mass-transfer and transport of organic solutes in porous-media that contain immobile immiscible organic liquid, Water Resour. Res., 28(1), 3345.
  • Brusseau, M. L., M. Narter, S. Schnaar, and J. Marble (2009), Measurement and estimation of organic-liquid/water interfacial areas for several natural porous media. Environ. Sci. Technol., 43(10), 36193625, doi:10.1021/es8020827.
  • Carr, C. S., S. Garg, and J. B. Hughes (2000), Effect of dechlorinated bacteria on the longevity and composition of PCE-containing nonaqueous phase liquids under equilibrium dissolution conditions, Environ. Sci. Technol., 34(6), 10881094.
  • Carta, G., and J. S. Bauer (1990), Analytic solution for chromatography with nonuniform sorbent particles, AIChE J., 36(1), 147150.
  • Christ, J. A. and L. M. Abriola (2007), Modeling metabolic reductive dechlorination in dense non-aqueous phase liquid source-zones. Adv. Water Resour., 30(6–7), 15471561, doi:10.1016/j.advwatres.2006.05.024
  • Conrad, S. H., J. L. Wilson, W. R. Mason, and W. J. Peplinski (1992), Visualization of residual organic liquid trapped in aquifers, Water Resour. Res., 28(2), 467478.
  • Cooling, M. R., B. Khalfaoui, and D. M. T. Newsham (1992), Phase equilibria in very dilute mixtures of water and unsaturated chlorinated hydrocarbons and of water and benzene, Fluid Phase Equilib., 81(1–2), 217229.
  • Cope, N., and J. B. Hughes (2001), Biologically-enhanced removal of PCE from NAPL source zones, Environ. Sci. Technol., 35, 20142021.
  • Crittenden, J. C., N. J. Hutzler, D. G. Geyer, J. L. Oravitz, and G. Friedman (1986), Transport of organic-compounds with saturated groundwater flow: Model development and parameter sensitivity, Water Resour. Res., 22(3), 271284.
  • Fredenslund, A., R. L. Jones, and J. M. Prausnitz (1975), Group-contribution estimation of activity coefficients in nonideal liquid-mixtures, AIChE J., 21(6), 10861099.
  • Geller, J. T., and J. R. Hunt (1993), Mass-transfer from nonaqueous phase organic liquids in water-saturated porous media, Water Resour. Res., 29(4), 833845.
  • Gmehling, J., P. Rasmussen, and A. Fredenslund (1982), Vapor-liquid-equilibria by UNIFAC group contribution: Revision and extension. 2. Ind. Eng. Chem. Process Des. Dev., 21, 118127.
  • Hansen, H. K., P. Rasmussen, A. Fredenslund, M. Schiller, and J. Gmehling (1991), Vapor-liquid equilibria by UNIFAC group contribution. 5. Revision and extension, Ind. Eng. Chem. Res., 30(10), 23522355.
  • Hatfield, K., and T. B. Stauffer (1993), Transport in porous-media containing residual hydrocarbon. 1. Model, J. Environ. Eng., 199(3), 540558.
  • Hayduk, W., and H. Laudie (1974), Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. AIChE J., 20(3), 611615.
  • Huang, J. C., D. Rothstein, and R. Madey (1984), Analytical solution for a first-order reaction in a packed bed with diffusion, AIChE J., 30(4), 660662.
  • Imhoff, P. T., P. R. Jaffé, and G. F. Pinder (1994), An experimental study of complete dissolution of a nonaqueous phase liquid in saturated porous media, Water Resour. Res., 30(2), 307320.
  • Interstate Technology and Regulatory Council (2008) In Situ Bioremediation of Chlorinated Ethene: DNAPL Source Zones, Interstate Technol. Regul. Counc., Washington, D. C.
  • Jin, M., M. Delshad, V. Dwarakanath, D. C. McKinney, G. A. Pope, K. Sepehrnoori, C. E. Tilburg, and R. E. Jackson (1995), Partitioning tracer test for detection, estimation and remediation performance assessment of subsurface nonaqueous phase liquids, Water Resour. Res., 31(5), 12011211.
  • Johns, M. L., and L. F. Gladden (1999), Magnetic resonance imaging study of the dissolution kinetics of octanol in porous media, J. Colloid Interface Sci., 210(2), 261270.
  • Leij, F. J., N. Toride, and M. T. van Genuchten (1993), Analytical solutions for non-equilibrium solute transport in three-dimensional porous-media, J. Hydrol., 151(2–4), 193228.
  • Li, P., G. Xiu, and A. E. Rodrigues (2003), Analytical breakthrough curves for inert core adsorbent with sorption kinetics, AIChE J., 49(11), 29742979.
  • Mayer, A. S., and C. T. Miller (1992), The influence of porous medium characteristics and measurement scale on pore-scale distributions of residual nonaqueous-phase liquids, J. Contam. Hydrol., 11, 189213.
  • Miller, C. T., M. M. Poirier-McNeilland A. S. Mayer (1990), Dissolution of trapped nonaqueous phase liquids: Mass transfer characteristics, Water Resour. Res., 26(11), 27832796.
  • Nkedi-Kizza, P., P. S. C. Rao, R. E. Jessup, and J. M. Davidson (1982), Ion exchange and diffusive mass transfer during miscible displacement through an aggregated oxisol, Soil Sci. Soc. Am. J., 46, 471476.
  • Pellett, G. E. (1964), Longitudinal dispersion, intrafiber diffusion, and liquid phase mass transfer during flow through fiber beds, Ph.D. dissertation, Inst. of Paper Chem., Lawrence Coll., Appleton, Wisc.
  • Pennell, K. D., L. M. Abriola, and W. J. Weber (1993), Surfactant-enhanced solubilization of residual dodecane in soil columns. 1. Experimental investigation, Environ. Sci. Technol., 27(12), 23322340.
  • Porter, M. L., D. Wildenschild, G. Grant, and J. I. Gerhard (2010), Measurement and prediction of the relationship between capillary pressure, saturation, and interfacial area in a NAPL–water–glass bead system. Water Resour. Res., 46, W08512, doi:10.1029/2009WR007786.
  • Powers, S. E. (1992), Dissolution of nonaqueous phase liquids in saturated subsurface systems, Ph.D. dissertation, Dep. of Civ. and Environ. Eng., Univ. of Mich., Ann Arbor.
  • Powers, S. E., L. M. Abriola, and W. J. Weber Jr. (1992), An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: Steady state mass transfer rates, Water Resour. Res., 28(10), 26912705.
  • Powers, S. E., L. M. Abriola, and W. J. Weber Jr. (1994a), An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: Transient mass transfer rates, Water Resour. Res., 30(2), 321332.
  • Powers, S. E., L. M. Abriola, J. S. Dunkin, and W. J. Weber Jr. (1994b), Phenomenological models for transient NAPL-water mass-transfer processes, J. Contam. Hydrol., 16(1), 133.
  • Ramsburg, C. A., and K. D. Pennell (2002), Density-modified displacement for dense nonaqueous phase liquid source-zone remediation: Density conversion using a partitioning alcohol, Environ. Sci. Technol., 36(9), 20822087, doi:10.1021/es0113571.
  • Ramsburg, C. A., C. E. Thornton, and J. A. Christ (2010), Degradation product partitioning in source zones containing chlorinated ethene DNAPL, Environ. Sci. Technol., 44(23), 91059111, doi:10.1021/es102536f.
  • Rao, P.S.C., D.E. Rolston, R. E. Jessup, and J. M. Davidson (1980), Solute transport in aggregated porous media: theoretical and experimental evaluation, Soil Sci. Soc. Am. J., 44(6), 11391146.
  • Rasmuson, A., and I. Neretnieks (1980), Exact solution of a model for diffusion in particles and longitudinal dispersion in packed-beds, AIChE J., 26(4), 686690.
  • Rasmuson, A., and I. Neretnieks (1981), Migration of radionuclides in fissured rock: The influence of micropore diffusion and longitudinal dispersion, J. Geophys. Res., 86(B5), 37493758.
  • Schnaar, G., and M. L. Brusseau (2005), Pore-scale characterization of organic immiscible-liquid morphology in natural porous media using synchrotron X-ray microtomography, Environ. Sci. Technol., 39(21), 84038410, doi:10.1021/es058370.
  • Smith, J. M., and H. C. Van Ness (1987), Introduction to Chemical Engineering Thermodynamics, 4th ed., McGraw-Hill, New York.
  • Sørensen, J. M., T Magnussen, P. Rasmussen, and A. Fredenslund (1979), Liquid-liquid equilibrium data: Their retrieval, correlation and prediction, Fluid Phase Equilib., 2, 297309.
  • Toride, N., F. J. Leij, and M. T. van Genuchten (1993), A comprehensive set of analytical solutions for nonequilibrium solute transport with 1st-order decay and zero-order production, Water Resour. Res., 29(7), 21672182.
  • Toride, N., F. J. Leij, and M. T. van Genuchten (1999), The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments, Version 2.1, U. S. Salinity Lab. Agric. Res. Serv. Rep., 137, pp. 119, U.S. Dep. of Agric., Riverside, Calif.
  • van Genuchten, M. T. (1985), A general approach for modeling solute transport in structured soils, Hydrogeol. of rocks of low permeability, Proc. Int. Assoc. Hydrogeol. Cong., 17(2), 513526.
  • van Genuchten, M. T., and W. J. Alves (1982), Analytical solutions of the one-dimensional convective-dispersive solute transport equation, Tech. Bull. 1661, 151 pp., U.S. Dep. of Agric., Washington, D. C.
  • van Genuchten, M. T., and R. J. Wagenet (1989), Two site/two region models for pesticide transport and degradation: theoretical development and analytical solutions. Soil Sci. Soc. Am. J., 53(5), 13031310.
  • van Genuchten, M. T., and P. J. Wierenga (1976), Mass-transfer studies in sorbing porous-media. 1. Analytical solutions, Soil Sci. Soc. Am. J., 40(4), 473480.
  • van Genuchten, M. T., and P. J. Wierenga (1977), Mass-transfer studies in sorbing porous-media. 2. Experimental evaluation with tritium, Soil Sci. Soc. Am.. J., 41(2), 272278.
  • van Genuchten, M. T., P. J. Wierenga, and G. A. O'Connor (1977), Mass transfer studies in sorbing porous media: III. Experimental evaluation with 2,4,5 T, Soil Sci. Soc. Am. J., 41(2), 278285.
  • Weber, W. J.,Jr., and F. A. DiGiano (1996), Process Dynamics in Environmental Systems, John Wiley, New York.
  • Willson, C. S., O. Pau, J. A. Pedit, and C. T. Miller (2000), Mass transfer rate limitation effects on partitioning tracer tests, J. Contam. Hydrol., 45(1–2), 7997.
  • Yang, Y., and P. L. McCarty (2000), Biologically enhanced dissolution of tetrachloroethene DNAPL, Environ. Sci. Technol., 34(14), 29792984.
  • Yang, Y. and P. L. McCarty (2002), Comparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution, Environ. Sci. Technol., 36(15), 34003404, doi:10.1021/es011408e.
  • Yu, S., and L. Semprini (2009). Enhanced reductive dechlorination of PCE DNAPL with TBOS as a slow release electron donor. J. Hazard. Mater., 167(1–3), 97104, doi:10.1016/j.jhazmat.2008.12.087.