SEARCH

SEARCH BY CITATION

References

  • Adam, J. C., E. A. Clark, and D. P. Lettenmaier (2006), Correction of global precipitation products for orographic effects, J. Clim, 19, 1538.
  • Allen, R., L. S. Pereira, D. Raes, and M. Smith (1998), Crop evapotranspiration: Guidelines for computing crop requirements, Food and Agric. Organ., Rome, Italy. (Available at http://www.fao.org/docrep/X0490E/x0490e00.htm.).
  • Anderson, E. A. (1973), National weather service river forecast system: Snow accumulation and ablation model, NOAA Tech. Memo. NWS Hydro-17, 217 pp., NOAA, Silver Spring, Md.
  • Bonfils, C., B. D. Santer, D. W. Pierce, H. G. Hidalgo, G. Bala, T. Das, T. P. Barnett, D. R. Cayan, C. Doutriaux, A. W. Wood, A. Mirin, and T. Nozawa (2008), Detection and attribution of temperature changes in the mountainous western United States, J. Clim, 21, 64046424.
  • Brandes, D., and B. P. Wilcox (2000), Evapotranspiration and soil moisture dynamics on a semiarid ponderosa pine hillslope, J. Am. Water Resour. Assoc., 36, 965974.
  • Brutsaert, W. (1982), Evaporation into the Atmosphere, 305 pp., Kluwer Acad., Dordrecht, Netherlands.
  • Cayan, D., E. Maurer, M. Dettinger, M. Tyree, and K. Hayhoe, (2008), Climate change scenarios for the California region, Clim. Change, 87, 2142.
  • Christensen, L., C. L. Tague, J. S. Baron (2008), Spatial patterns of simulated transpiration response to climate variability in a snow dominated mountain ecosystem, Hydrol. Proc., 22, 35763588.
  • Christensen, N. S., and D. P. Lettenmaier (2007), A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin, Hydrol. Earth Syst. Sci., 11, 14171434.
  • Clow, D. W., M. A. Mast, and D. H. Campbell (1996), Controls on surface water chemistry in the upper Merced River Basin, Yosemite National Park, California, Hydrol. Proc., 10, 727746.
  • Cornwell, A. R., and L. D. Harvey (2007), Soil moisture: A residual problem underlying AGCMs, Clim. Change, 84, 313336.
  • Daly, C., P. Neilson, and D. L. Phillips (1994), A statistical-topographic model for mapping climatological precipitation over mountainous terrain, J. Appl. Meteor., 33, 140158.
  • Daly, C., W. P. Gibson, G. H. Taylor, G. L. Johnson, and P. Pasteris (2002), A knowledge-based approach to the statistical mapping of climate, Clim. Res., 22, 99113.
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris (2008), Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States, Int. J. Climatol., 28, 20312064.
  • Dettinger, M. D., and D. R. Cayan (1995), Large-scale atmospheric forcing of recent trends toward early snowmelt in California, J. Clim., 8, 606623.
  • Dettinger, M. D., D. R. Cayan, M. K. Meyer, and A. E. Jeton (2004), Simulated hydrologic responses to climate variations and change in the Merced, Carson, and American River Basins, Sierra Nevada, California, 1900–2099, Clim. Change, 62, 283317.
  • D'Odorico, P., and A. Porporato (2006), Soil moisture dynamics in water-limited ecosystems, in Dryland Ecohydrology, edited by P. D'Odorico, and A. Porporato, chap. 3, pp. 3146, Springer, Dordrecht, Netherlands.
  • Dozier, J., and J. E. Frew (2009), Computational provenance in hydrologic science: A snow mapping example, Phil. Trans. R. Soc. A, 367, 10211033.
  • Dozier, J., T. H. Painter, K. Rittger, and J. E. Frew (2008), Time-space continuity of daily maps of fractional snow cover and albedo from MODIS, Adv. Water Resour., 31, 15151526.
  • Feddes, R. A., P. J. Kowalik, and H. Zaradny (1978), Simulation of Field Water Use and Crop Yield, 681 pp., John Wiley, New York.
  • Flint, A. L., L. E. Flint, and M. D. Dettinger (2008), Modeling soil moisture processes and recharge under a melting snowpack, Vadose Zone J., 7, 350357.
  • Gedney, N., P. M. Cox, H. Douville, J. Polcher, and P. J. Valdes (2000), Characterizing GCM land surface schemes to understand their responses to climate change. J. Clim., 13, 30663079.
  • Goldstein, A. H., N. E. Hultman, J. M. Fracheboud, M. R. Bauer, J. A. Panek, M. Xu, Y. Qi, A. B. Guenther, and W. Baugh (2000), Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada (CA), Agric. For. Meteorol., 101, 113129.
  • Hamlet, A. F., P. W. Mote, M. P. Clark, and D. P. Lettenmaier (2007), Twentieth-century trends in runoff, evapotranspiration, and soil moisture in the Western United States, J. Clim., 20, 14681485.
  • Hickel, K., and L. Zhang (2006), Estimating the impact of rainfall seasonality on mean annual water balance using a top-down approach, J. Hydrol., 331, 409424.
  • Hoerling, M., D. Lettenmaier, D. Cayan, and B. Udall (2009), Reconciling projections of Colorado River streamflow, Southwest Hydrol., 8, 2031.
  • Huber, N. K. (1987), The geologic story of Yosemite National Park, U.S. Geol. Surv. Bull., 1595, 78 pp.
  • Jarvis, P. G., G. B. James, and J. J. Landsberg (1976), Coniferous forest, in Vegetation and the Atmosphere, vol. 2, edited by J. L. Monteith, pp. 171240, Academic, London.
  • Jeton, A. E., M. D. Dettinger, and J. LaRue Smith (1996), Potential effects of climate change on streamflow, eastern and western slopes of the Sierra Nevada, California and Nevada, U.S. Geol. Surv. Water Resour. Invest. Rep., 95–4260, 44 pp.
  • Koster, R. D., and P. C. D. Milly (1997), The interplay between transpiration and runoff formulations in land surface schemes used with atmospheric models, J. Clim., 10, 15781591.
  • Laio, F., A. Porporato, L. Ridolfi, and I. Rodriguez-Iturbe (2001), Plants in water-controlled ecosystems: Active role in hydrologic processes and response to water stress. Part II: Probabilistic soil moisture dynamics, Adv. Water Resour., 24, 707723.
  • Lowry, C., S. Loheide, J. Deems, and J. D. Lundquist (2010), Linking snowmelt derived recharge and groundwater flow in a high elevation meadow system, Sierra Nevada Mountains, California, Hyd. Proc., 24, 28212833.
  • Lundquist, J. D., and D. R. Cayan (2007), Surface temperature patterns in complex terrain: Daily variations and long-term change in the central Sierra Nevada, California, J. Geophys. Res., 112, D11124, doi:10.1029/2006JD007561.
  • Lundquist, J. D., and F. Lott (2008), Using inexpensive temperature sensors to monitor the duration and heterogeneity of snow-covered areas in complex terrain, Water Resour. Res., 44, W00D16, doi:10.1029/2008WR007035.
  • Lundquist, J. D., and J. Roche (2009), Climate change and water supply in western national parks, Park Sci., 26, pp. 3134. (Available at http://www.nature.nps.gov/ParkScience/index.cfm?ArticleID=285.).
  • Lundquist, J. D., J. Minder, P. J. Neiman, and E. Sukovich (2010), Relationships between barrier jet heights, orographic precipitation gradients, and streamflow in the Northern Sierra Nevada, J. Hydrometeorol., 11, 11411156.
  • Lutz, J. A., J. W. van Wagtendonk, and J. F. Franklin (2010), Climatic water deficit, tree species ranges, and climate change in Yosemite National Park, J. Biogeogr., 37, 936950.
  • Manabe, S. (1969), Climate and the ocean circulation: I. The atmospheric circulation and the hydrology of the Earth's surface, Mon. Weather Rev., 97, 739774.
  • Mellander, P.-E., K. Bishop, and T. Lundmark (2004), The influence of soil temperature on transpiration: A plot scale manipulation in a young Scots pine stand, For. Ecol. Manage., 195, 1528.
  • Miller, G. R., D. D. Baldocchi, B. E. Law, and T. Meyers (2007), An analysis of soil moisture dynamics using multi-year data from a network of micrometeorological observation sites. Adv. Water Resour., 30, 10651081.
  • Milly, P. C. D., K. A. Dunne, and A. V. Vecchia (2005), Global pattern of trends in streamflow and water availability in a changing climate, Nature, 438, 347350.
  • Monteith, J. L., and M. H. Unsworth (1973), Principles of Environmental Physics, 293 pp., Butterworth-Heinemann, Oxford, U.K.
  • Natural Resources Conservation Service (2006), Soil Survey Geographic (SSURGO) database for Yosemite National Park, California, ca790, U.S. Dep. of Agric., Washington, D. C. (Available at http://SoilDataMart.nrcs.usda.gov.).
  • Painter, T. H., K. Rittger, C. McKenzie, R. E. Davis, and J. Dozier (2009), Retrieval of subpixel snow-covered area, grain size, and albedo from MODIS, Remote Sens. Environ., 113, 868879.
  • Risbey, J. S., and D. Entekhabi (1996), Observed Sacramento Basin streamflow response to precipitation and temperature changes and its relevance to climate impact studies. J. Hydrol., 184, 209223.
  • Rockwell, G. L., S. W. Anderson, and P. D. Hayes (1997), Water resources data, California, Water Year 1996, vol. 3, Southern central valley basins and the great basin from Walker River to Truckee River.U.S. Geol. Surv. Water-Data Rep. CA–96–3, 479 pp.
  • Rodriguez-Iturbe, I., A. Porporato, L. Ridolfi, V. Isham, and D. R. Cox (1999), Probabilistic modelling of water balance at a point: The role of climate, soil, and vegetation, Proc. R. Soc. A., 455, 37893805.
  • Running, S. W., and J. C. Coughlan (1988), A general model of forest ecosystem processes for regional applications: I. Hydrologic balance, canopy gas exchange, and primary production processes, Ecol. Modelling, 42, 125154.
  • Shamir, E., and K. P. Georgakakos (2005), Distributed snow accumulation and ablation modeling in the American River basin, Adv. Water Resour., 29, 558570.
  • Shuttleworth, W. J. (1993), Evaporation, in Handbook of Hydrology, edited by D. R. Maidement, chap. 4, pp. 4.14.53, McGraw-Hill, Inc., New York.
  • Shuttleworth, W. J. (2007), Putting the ‘vap’ into evaporation, Hydrol. Earth Syst. Sci., 11, 210244.
  • Stewart, I. T., D. R. Cayan, and M. D. Dettinger (2004), Changes in snowmelt runoff timing in western North America under a ‘business as usual’ climate change scenario, Clim. Change, 62, 217232.
  • Stewart, I. T., D. R. Cayan, and M. D. Dettinger (2005), Changes towards earlier streamflow timing across western North America, J. Clim., 18, 11361155.
  • Tague, C. L., and L. E. Band (2004), Regional hydro-ecologic simulation system: An object-oriented approach to spatially distributed modeling of carbon, water and nutrient cycling, Earth Interact., 8, 142.
  • Tague, C. L., K. Heyn, and L. Christensen (2009), Topographic controls on spatial patterns of conifer transpiration and net primary productivity under climate warming in mountain ecosystems, Ecohydrology, 2, 541554.
  • Tanja, S., et al. (2003), Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring, Global Change Biol., 9, 14101426, doi:10.1046/j.1365-2486.2003.00597.x.
  • Troeng, E., and S. Linder (1982), Gas exchange in a 20-year-old stand of Scots pine: I. Net photosynthesis of current and 1-year-old shoots within and between seasons, Physiol. Plant., 54, 714.
  • Wigmosta, M. S., L. W. Vail, and D. P. Lettenmaier (1994), A distributed hydrology-vegetation model for complex terrain, Water Resour. Res., 30, 16651679, doi:10.1029/94WR00436.
  • Wilson, K. B., et al. (2001), A comparison of methods for determining forest evapotranspiration and its components: Sap-flow, soil water budget, eddy covariance and catchment water balance, Agric. For. Meteorol., 106, 153168.