SEARCH

SEARCH BY CITATION

References

  • Al-Saigh, N. H., Z. S. Mohammed, and M. S. Dahham (1994), Detection of water leakage from dams by self-potential method, Eng. Geol., 37(2), 115121.
  • Archie, G. E. (1942), The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. Am. Inst. Min. Metall. Pet. Eng., 146, 5462.
  • Asfahani, J., Y. Radwan, and I. Layyous (2010), Integrated geophysical and morphotectonic survey of the impact of Ghab extensional tectonics on the Qastoon Dam, northwestern Syria, Pure Appl. Geophys., 167, 323338.
  • Avellaneda, M., and S. Torquato (1991), Rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media, Phys. Fluids A, 3, 25292540, doi:10.1063/1.858194.
  • Bolève, A. (2009), Localisation et quantification des zones de fuites dans les digues et les barrages par la méthode de potentiel spontané, PhD thesis, 224 pp., Univ. de Savoie, Chambery, France.
  • Bolève, A., A. Crespy, A. Revil, F. Janod, and J. L. Mattiuzzo (2007), Streaming potentials of granular media: Influence of the Dukhin and Reynolds numbers, J. Geophys. Res., 112, B08204, doi:10.1029/2006JB004673.
  • Bolève, A., A. Revil, F. Janod, J. L. Mattiuzzo, and J.-J. Fry (2009), Preferential fluid flow pathways in embankment dams imaged by self-potential tomography, Near Surf. Geophys., 7(5), 447462, doi:10.3997/1873-0604.2009012.
  • Bolève, A., F. Janod, A. Revil, A. Lafon, and J.-J. Fry (2011), Localization and quantification of leakages in dams using time-lapse self-potential measurements associated with salt tracer injection, J. Hydrol., 403(3–4), 242252.
  • Clavier, C., G. Coates, and J. Dumanoir (1977), The theoretical and experimental bases for the “dual water” model for the interpretation of shaly sands, paper 6869 presented at 52nd Annual Fall Technical Conference and Exhibit of the Society of Petroleum Engineers of AIME, Denver, Colo., 9–12 Oct.
  • Crespy, A., A. Revil, N. Linde, S. Byrdina, A. Jardani, A. Bolève, and P. Henry (2008), Detection and localization of hydromechanical disturbances in a sandbox using the self-potential method, J. Geophys. Res., 113, B01205, doi:10.1029/2007JB005042.
  • De Witte, L. (1948), A new method of interpretation of self-potential field data, Geophysics, 13(4), 600608.
  • Gex, P. (1980), Electrofiltration phenomena associated with several dam sites, Bull. Soc. Vaud Sci. Nat., 357(75), 3950.
  • Haario, H., E. Saksman, and J. Tamminen (2001), An adaptive Metropolis algorithm, Bernoulli, 7, 223242.
  • Haas, A., and A. Revil (2009), Electrical signature of pore scale displacements, Water Resour. Res., 45, W10202, doi:10.1029/2009WR008160.
  • Hallenburg, J. K. (1998), Standard Methods of Geophysical Formation Evaluation, 442 pp., PennWell Books, Tulsa, Okla.
  • Helfferich, F. (1995), Ion Exchange, Dover, New York.
  • Jardani, A., and A. Revil (2009), Stochastic joint inversion of temperature and self-potential data, Geophys. J. Int., 179(1), 640654, doi:10.1111/j.1365-246X.2009.04295.x.
  • Jardani, A., A. Revil, A. Bolève, J. P. Dupont, W. Barrash, and B. Malama (2007), Tomography of the Darcy velocity from self-potential measurements, Geophys. Res. Lett., 34, L24403, doi:10.1029/2007GL031907.
  • Jardani, A., A. Revil, E. Slob, and W. Sollner (2010), Stochastic joint inversion of 2D seismic and seismoelectric signals in linear poroelastic materials, Geophysics, 75(1), N19N31, doi:10.1190/1.3279833.
  • Johnson, D. L., and P. N. Sen (1988), Dependence of the conductivity of a porous medium on electrolyte conductivity, Phys. Rev. B, 37, 35023510.
  • Jougnot, D., N. Linde, A. Revil, and C. Doussan (2012), Derivation of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils, Vadose Zone J., 11(1), 0086, doi:10.2136/vzj2011.0086.
  • Loke, M. H., and R. D. Barker (1996), Practical techniques for 3D resistivity surveys and data inversion, Geophys. Prospect., 44, 499523.
  • Maineult, A., Y. Bernabé, and P. Ackerer (2005), Detection of advected concentration and pH fronts from self-potential measurements, J. Geophys. Res., 110, B11205, doi:10.1029/2005JB003824.
  • Maineult, A., Y. Bernabé, and P. Ackerer (2006), Detection of advected, reacting redox fronts from self-potential measurements, J. Contam. Hydrol., 86, 3252.
  • Malama, B., A. Revil, and K. L. Kulhman (2009a), A semi-analytical solution for transient streaming potentials associated with confined aquifer pumping tests, Geophys. J. Int., 176, 10071016, doi:10.1111/j.1365-246X.2008.04014.x.
  • Malama, B., K. L. Kuhlman, and A. Revil (2009b), Theory of transient streaming potentials associated with axial-symmetric flow in unconfined aquifers, Geophys. J. Int., 179, 9901003, doi:10.1111/j.1365-246X.2009.04336.x.
  • Martínez-Pagán, P., A. Jardani, A. Revil, and A. Haas (2010), Self-potential monitoring of a salt plume, Geophysics, 75(4), WA17WA25, doi:10.1190/1.3475533.
  • McDuff, R. E., and R. A. Ellis (1979), Determining diffusion coefficients in marine sediments: A laboratory study of the validity of resistivity techniques, Am. J. Sci., 279, 666675.
  • Merkler, G.-P., H. Militzer, H. Hötzl, H. Armbruster, and J. Brauns (Eds.) (1989), Detection of Subsurface Flow Phenomena, Lect. Notes Earth Sci., vol. 27, 514 pp., Springer, Berlin.
  • Minsley, B. J., L. B. Burton, S. Ikard, and H. M. Powers (2011), Hydrogeophysical Investigations at Hidden Dam, Raymond, California, J. Environ. Eng. Geophys., 16(4), 145164.
  • Moore, J. R., A. Boleve, J. W. Sanders, and S. D. Glaser (2011), Self-potential investigation of moraine dam seepage, J. Appl. Geophys., 74, 277286.
  • Mualem, Y. (1986), Hydraulic conductivity of unsaturated soils: Prediction and formulas, in Methods of Soil Analysis, part 1, Agronomy, vol. 9, edited by A. Klute, pp. 799823, Am. Soc. of Agron., Madison, Wis.
  • Newman, J. (1967), Transport processes in electrolytic solutions, Adv. Electrochem. Electrochem. Eng., 5, 87136.
  • Newman, J. S. (1991), Electrochemical Systems, 2nd ed., Prentice-Hall, Englewood Cliffs, N. J.
  • Ogilvy, A. A., M. A. Ayed, and V. A. Bogoslovsky (1969), Geophysical studies of water leakage from reservoirs, Geophys. Prospect., 22, 3662.
  • Overbeek, J. T. G. (1952), Electrokinetic phenomena, in Colloid Science, Irreversible Systems, vol. 1, edited by H. R. Kruyt, 115193, Elsevier, Amsterdam.
  • Panthulu, T. V., C. Krishnaiah, and J. M. Shirke (2001), Detection of seepage paths in earth dams using self-potential and electrical resistivity methods, Eng. Geol., 59, 281295.
  • Pfannkuch, H. O. (1972), On the correlation of electrical conductivity properties of porous systems with viscous flow transport coefficients, in Fundamentals of Transport Phenomena in Porous Media, pp. 4254, Elsevier, New York.
  • Prigogine, I. (1947), Étude thermodynamique des phénomènes irréversibles, 143 p., Dunod, Paris.
  • Revil, A. (1999), Ionic diffusivity, electrical conductivity, membrane and thermoelectric potentials in colloids and granular porous media: A unified model, J. Colloid Interface Sci., 212, 503522.
  • Revil, A., and L. M. Cathles (1999), Permeability of shaly sands, Water Resour. Res., 35(3), 651662.
  • Revil, A., and N. Florsch (2010), Determination of permeability from spectral induced polarization data in granular media, Geophys. J. Int., 181, 14801498, doi:10.1111/j.1365-246X.2010.04573.x.
  • Revil, A., and A. Jardani (2010), Stochastic inversion of permeability and dispersivities from time lapse self-potential measurements: A controlled sandbox study, Geophys. Res. Lett., 37, L11404, doi:10.1029/2010GL043257.
  • Revil, A., and N. Linde (2006), Chemico-electromechanical coupling in microporous media, J. Colloid Interface Sci., 302, 682694.
  • Revil, A., H. Schwaeger, L. M. Cathles, and P. Manhardt (1999), Streaming potential in porous media. 2. Theory and application to geothermal systems, J. Geophys. Res., 104(B9), 20,03320,048.
  • Revil, A., V. Naudet, J. Nouzaret, and M. Pessel (2003), Principles of electrography applied to self-potential electrokinetic sources and hydrogeological applications, Water Resour. Res., 39(5), 1114, doi:10.1029/2001WR000916.
  • Revil, A., W. F. Woodruff, and N. Lu (2011), Constitutive equations for coupled flows in clay materials, Water Resour. Res., 47, W05548, doi:10.1029/2010WR010002.
  • Richards, L. A. (1931), Capillary conduction of liquids through porous media, Physics, 1, 318333.
  • Rozycki, A. (2009), Evaluation of the streaming potential effect of piping phenomena using a finite cylinder model, Eng. Geol., 104(1–2), 98108.
  • Rozycki, A., J. M. R. Fonticiella, and A. Cuadra (2006), Detection and evaluation of horizontal fractures in Earth dams using self-potential method, Eng. Geol., 82(3), 145153.
  • Sakaki, T., and T. H. Illangasekare (2007), Comparison of height-averaged and point-measured capillary pressure–saturation relations for sands using a modified Tempe cell, Water Resour. Res., 43, W12502, doi:10.1029/2006WR005814.
  • Sheffer, M. R. (2002), Response of the self-potential method to changing seepage conditions in enbankment dams, BSc thesis, 149 pp., Queen's University, Kingston, Ont., Canada.
  • Sheffer, M. R. (2007), Forward modeling and inversion of streaming potential for the interpretation of hydraulic conditions from self-potential data, PhD thesis, Univ. of B. C., Vancouver, B. C., Canada.
  • Sheffer, M. R., and J. A. Howie (2001), Imaging subsurface seepage conditions through the modeling of streaming potential, in Proceedings of the 54th Canadian Geotechnical Conference, pp. 10941101, Can. Geotech. Soc., Richmond, B.C., Canada.
  • Sheffer, M. R., and J. A. Howie (2003), A numerical modelling procedure for the study of the streaming potential phenomenon in embankment dams, in Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP), vol. 16, pp. 475487, Environ. and Eng. Geophys. Soc., San Antonio, Tex.
  • Sheffer, M. R., and D. W. Oldenburg (2007), Three-dimensional modeling of streaming potential, Geophys. J. Int., 169(3), 839848.
  • Sill, W. R., and T. J. Killpack (1982), SPXCPL: Two-dimensional modelling program of self-potential effects from cross-coupled fluid and heat flow (user's guide and documentation for version 1.0), Rep. DOE/ID/12079-60 ESL-74, Earth Sci. Lab., Univ. of Utah, Salt Lake City.
  • Titov, K., V. Loukhmanov, and A. Popatov (2000), Monitoring of water seepage from a reservoir using resistivity and self polarization methods: Case history of the Petergoph fountain water supply system, First Break, 18(10), 431435.
    Direct Link:
  • vanGenuchten, M. T. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892898.
  • Wan, C. F., and R. Fell (2008), Assessing the potential of internal instability and suffusion in embankment dams and their foundations, J. Geotech. Geoenviron. Eng., 134(3), 401407.
  • Wilt, M. J., and D. K. Butler (1990), Geotechnical applications of the self-potential (SP) method; Report 4: Numerical modelling of SP anomalies: Documentation of program SPPC and applications, Tech. Rep. REMR-GT-6, Waterw. Exp. Stn., U.S. Army Corps of Eng., Vicksburg, Miss.
  • Wilt, M. J., and R. F. Corwin (1989), Numerical modeling of self-potential anomalies due to leaky dams: Model and field examples, in Detection of Subsurface Flow Phenomena, Lect. Notes Earth Sci., vol. 27, edited by G.-P. Merkler et al., pp. 7389, Springer, Berlin.
  • Woodruff, W. F., A. Revil, A. Jardani, D. Numendal, and S. Cumella (2010), Stochastic inverse modeling of self-potential data in boreholes, Geophys. J. Int., 183, 748764, doi:10.1111/j.1365-246X.2010.04770.x.