SEARCH

SEARCH BY CITATION

References

  • Andricevic, R., and V. Cvetkovic (1998), Relative dispersion for solute flux in aquifers, J. Fluid Mech., 361, 145174.
  • Aris, R. (1989), Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Dover, New York.
  • Attinger, S., M. Dentz, H. Kinzelbach, and W. Kinzelbach (1999), Temporal behaviour of a solute cloud in a chemically heterogeneous porous medium, J. Fluid Mech., 386, 77104.
  • Attinger, S., M. Dentz, and W. Kinzelbach (2004), Exact transverse macro dispersion coefficients for transport in heterogeneous porous media, Stochastic Environ. Res. Risk. Assess., 18(1), 915.
  • Batchelor, G. (2000), An introduction to Fluid Dynamics, Cambridge Univ. Press, New York.
  • Bauer, R. D., M. Rolle, S. Bauer, C. Eberhardt, P. Grathwohl, O. Kolditz, R. U. Meckenstock, and C. Griebler (2009), Enhanced biodegradation by hydraulic heterogeneities in petroleum hydrocarbon plumes, J. Contam. Hydrol., 105(1-2), 5668, doi:10.1016/j.jconhyd.2008.11.004.
  • Bear, J. (1972), Dynamics of Fluids in Porous Media, Elsevier, New York.
  • Bear, J. (1979), Hydraulics of Groundwater, McGraw-Hill, New York.
  • Beaudoin, A., J. R. de Dreuzy, and J. Erhel (2010), Numerical Monte Carlo analysis of the influence of pore-scale dispersion on macrodispersion in 2-D heterogeneous porous media, Water Resour. Res., 46, W12537, doi:10.1029/2010WR009576.
  • Bellin, A., and D. Tonina (2007), Probability density function of non-reactive solute concentration in heterogeneous porous formations, J. Contam. Hydrol., 94(1-2), 109125.
  • Butera, I., and M. Tanda (1999), Solute transport analysis through heterogeneous media in nonuniform in the average flow by a stochastic approach, Transp. Porous Media, 36(3), 255291.
  • Caroni, E., and V. Fiorotto (2005), Analysis of concentration as sampled in natural aquifers, Transp. Porous Media, 59(1), 1945, doi:10.107/s11242–004–1119–x.
  • Chiogna, G., C. Eberhardt, P. Grathwohl, O. A. Cirpka, and M. Rolle (2010), Evidence of compound-dependent hydrodynamic and mechanical transverse dispersion by multitracer laboratory experiments, Environ. Sci. Technol., 44(2), 688693.
  • Chiogna, G., O. A. Cirpka, P. Grathwohl, and M. Rolle (2011), Transverse mixing of conservative and reactive tracers in porous media: Quantification through the concepts of flux-related and critical dilution indices, Water Resour. Res., 47, W02505, doi:10.1029/2010WR009608.
  • Cirpka, O. A. (2002), Choice of dispersion coefficients in reactive transport calculations on smoothed fields, J. Contam. Hydrol., 58(3-4), 261282.
  • Cirpka, O. A., and S. Attinger (2003), Effective dispersion in heterogeneous media under random transient flow conditions, Water Resour. Res., 39(9), 1257, doi:10.1029/2002WR001931.
  • Cirpka, O. A., and P. K. Kitanidis (2000), Characterization of mixing and dilution in heterogeneous aquifers by means of local temporal moments, Water Resour. Res., 36(5), 12211136.
  • Cirpka, O. A., and A. J. Valocchi (2007), Two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady state, Adv. Water Resour., 30(6-7), 16681679.
  • Cirpka, O. A., and A. J. Valocchi (2009), Reply to comments on “Two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady state” by H. Shao et al. Adv. Water Resour., 32(2), 298301, doi:10.1016/j.advwatres.2008.10.018.
  • Cirpka, O. A., E. O. Frind, and R. Helmig (1999a), Streamline-oriented grid-generation for transport modelling in two-dimensional domains including wells, Adv. Water Resour., 22(7), 697710.
  • Cirpka, O. A., E. O. Frind, and R. Helmig (1999b), Numerical methods for reactive transport on rectangular and streamline-oriented grids, Adv. Water Resour., 22(7), 711728.
  • Cirpka, O. A., Å. Olsson, Q. Ju, M. A. Rahman, and P. Grathwohl (2006), Determination of transverse dispersion coefficients from reactive plume lengths, Ground Water, 44(2), 212221, doi:10.1111/j.1745-6584.2005.00124.x.
  • Cirpka, O. A., R. L. Schwede, J. Luo, and M. Dentz (2008), Concentration statistics for mixing-controlled reactive transport in random heterogeneous media, J. Contam. Hydrol., 98(1-2), 6174.
  • Dagan, G. (1984), Solute transport in heterogeneous porous formations, J. Fluid Mech., 145, 151177.
  • Dagan, G. (1988), Time-dependent macrodispersion for solute transport in anisotropic heterogeneous aquifers, Water Resour. Res., 24(9), 14911500.
  • Dagan, G. (1989), Flow and Transport in Porous Formations, Springer, Berlin.
  • Dagan, G. (1990), Transport in heterogeneous porous formations: Spatial moments, ergodicity, and effective dispersion, Water Resour. Res., 26(6), 12811290.
  • Dagan, G. (1991), Dispersion of a passive solute in non-ergodic transport by steady velocity fields in heterogeneous formations, J. Fluid Mech., 233, 197210.
  • Dagan, G. (1994), An exact nonlinear correction to transverse macrodispersivity for transport in heterogeneous formations, Water Resour. Res., 30(10), 26992705.
  • de Barros, F. P. J., and W. Nowak (2010), On the link between contaminant source release conditions and plume prediction uncertainty, J. Contam. Hydrol., 116(1-4), 2434, doi:10.1016/j.jconhyd.2010.05.004.
  • de Barros, F. P. J., and Y. Rubin (2011), Modelling of block-scale macrodispersion as a random function, J. Fluid Mech., 676, 514545, doi:10.1017/jfm.2011.65.
  • de Barros, F. P. J., Y. Rubin, and R. Maxwell (2009), The concept of comparative information yield curves and its application to risk-based site characterization, Water Resour. Res., 45, W06401, doi:10.1029/2008WR007324.
  • de Dreuzy, J. R., A. Beaudoin, and J. Erhel (2007), Asymptotic dispersion in 2D heterogeneous porous media determined by parallel numerical simulations, Water Resour. Res., 43, W10439, doi:10.1029/2006WR005394.
  • Dentz, M., and J. Carrera (2003), Effective dispersion in temporally fluctuating flow through a heterogeneous medium, Phys. Rev. E, 68(3), 36310.
  • Dentz, M., and D. M. Tartakovsky (2010), Probability density functions for passive scalars dispersed in random velocity fields, Geophys. Res. Lett., 37, L24406, doi:10.1029/2010GL045748.
  • Dentz, M., H. Kinzelbach, S. Attinger, and W. Kinzelbach (2000a), Temporal behaviour of a solute cloud in a heterogeneous porous medium: 1. Point-like injection, Water Resour. Res., 36(12), 35913604.
  • Dentz, M., H. Kinzelbach, S. Attinger, and W. Kinzelbach (2000b), Temporal behaviour of a solute cloud in a heterogeneous porous medium: 2. Spatially extended injection, Water Resour. Res., 36(12), 36053614.
  • Dietrich, C. R., and G. N. Newsam (1993), A fast and exact method for multidimensional Gaussian stochastic simulations, Water Resour. Res., 29(8), 28612869.
  • Dykaar, B. B., and P. K. Kitanidis (1992), Determination of the effective hydraulic conductivity for heterogeneous porous media using a numerical spectral approach: 1. Method, Water Resour. Res., 28(4), 11551166.
  • Eberhard, J. (2004), Approximations for transport parameters and self-averaging properties for point-like injections in heterogeneous media, J. Phys. A, 37(7), 25492571.
  • Fiori, A. (1996), Finite Peclet extensions of Dagan's solutions to transport in anisotropic heterogeneous formations, Water Resour. Res., 32(1), 193198.
  • Fiori, A. (1998), On the influence of pore-scale dispersion in nonergodic transport in heterogeneous formations, Transp. Porous Media, 30(1), 5773.
  • Fiori, A. (2001), The Lagrangian concentration approach for determining dilution in aquifer transport: Theoretical analysis and comparison with field experiments, Water Resour. Res., 37(12), 31053114.
  • Fiori, A., and G. Dagan (1999), Concentration fluctuations in transport by groundwater: Comparison between theory and field experiments, Water Resour. Res., 35(1), 105112.
  • Fiorotto, V., and E. Caroni (2002), Solute concentration statistics in heterogeneous aquifers for finite Péclet values, Transp. Porous Media, 48(3), 331351.
  • Freeze, R. A. (1975), A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media, Water Resour. Res., 11(5), 725741.
  • Frind, E. O., and G. B. Matanga (1985), The dual formulation of flow for contaminant transport modeling: 1. Review of theory and accuracy aspects, Water Resour. Res., 21(2), 159169.
  • Garabedian, S. P., D. R. LeBlanc, L. W. Gelhar, and M. A. Celia (1991), Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 2. Analysis of spatial moments for a nonreactive tracer, Water Resour. Res., 27(5), 911924.
  • Gelhar, L. (1993), Stochastic Subsurface Hydrology, Prentice Hall, Englewood Cliffs, N. J.
  • Gelhar, L. W., and C. L. Axness (1983), Three-dimensional stochastic analysis of macrodispersion in aquifers, Water Resour. Res., 19(1), 161180.
  • Genereux, D., and J. Guardiario (2001), A borehole flowmeter investigation of small-scale hydraulic conductivity variation in the Biscayne aquifer, Florida, Water Resour. Res., 37(5), 15111517.
  • Ham, P. A. S., R. J. Schotting, H. Prommer, and G. B. Davis (2004), Effects of hydrodynamic dispersion on plume lengths for instantaneous bimolecular reactions, Adv. Water Resour., 27(8), 803813, doi:10.1016/j.advwatres.2004.05.008.
  • Hazen, A. (1892), Some physical properties of sands and gravels with special reference to their use in filtration, Annu. Rep. State Board Health Mass., 24, 541556.
  • Hsu, K., D. Zhang, and S. Neuman (1996), Higher-order effects on flow and transport in randomly heterogeneous porous media, Water Resour. Res., 32(3), 571582.
  • Jankovic, I., D. R. Steward, R. J. Barnes, and G. Dagan (2009), Is transverse macrodispersivity in three-dimensional groundwater transport equal to zero? A counterexample, Water Resour. Res., 45, W08415, doi:10.1029/2009WR007741.
  • Jose, S. C., and O. A. Cirpka (2004), Measurement of mixing-controlled reactive transport in homogeneous porous media and its prediction from conservative tracer test data, Environ. Sci. Technol., 38(7), 20892096.
  • Kapoor, V., and L. W. Gelhar (1994a), Transport in three-dimensionally heterogeneous aquifers: 1. Dynamics of concentration fluctuations, Water Resour. Res., 30(6), 17751788.
  • Kapoor, V., and L. W. Gelhar (1994b), Transport in three-dimensionally heterogeneous aquifers: 2. Predictions and observations of concentration fluctuations, Water Resour. Res., 30(6), 17891801.
  • Kitanidis, P. K. (1988), Predictions by the method of moments of transport in heterogeneous formations, J. Hydrol., 102(1-4), 453473.
  • Klenk, I., and P. Grathwohl (2002), Transverse vertical dispersion in groundwater and the capillary fringe, J. Contam. Hydrol., 58(1-2), 111128, doi:10.1016/S0169-7722(02)00011-6.
  • Liedl, R., A. J. Valocchi, P. Dietrich, and P. Grathwohl (2005), Finiteness of steady state plumes, Water Resour. Res., 41, W12501, doi:10.1029/2005WR004000.
  • Neuman, S. P. (1993), Eulerian-Lagrangian theory of transport in space-time nonstationary velocity fields: Exact nonlocal formalism by conditional moments and weak approximation, Water Resour. Res., 29(3), 633645.
  • Neuman, S. P., C. L. Winter, and C. M. Newman (1987), Stochastic theory of field-scale Fickian dispersion in anisotropic porous media, Water Resour. Res., 23(3), 453466.
  • Olsson, Å., and P. Grathwohl (2007), Transverse dispersion of non-reactive tracers in porous media: A new nonlinear relationship to predict dispersion coefficients, J. Contam. Hydrol., 92(3-4), 149161, doi:10.1016/j.jconhyd.2006.09.008.
  • Pannone, M., and P. K. Kitanidis (1999), Large-time behavior of concentration variance and dilution in heterogeneous formations, Water Resour. Res., 35(9), 623634.
  • Prommer, H., B. Anneser, M. Rolle, F. Einsiedl, and C. Griebler (2009), Biogeochemical and isotopic gradients in a BTEX/PAH contaminat plume: Model-based interpretation of a high-resolution field data set, Environ. Sci. Technol, 43(21), 82068212.
  • Rahman, M. A., S. C. Jose, W. Nowak, and O. A. Cirpka (2005), Experiments on vertical transverse mixing in a large-scale heterogeneous model aquifer, J. Contam. Hydrol., 80(3-4), 130148.
  • Rehfeldt, K. R., J. M. Boggs, and L. W. Gelhar (1992), Field study of dispersion in a heterogeneous aquifer: 3. Geostatical analysis of hydraulic conductivity, Water Resour. Res., 28(12), 33093324.
  • Rolle, M., C. Eberhardt, G. Chiogna, O. A. Cirpka, and P. Grathwohl (2009), Enhancement of dilution and transverse reactive mixing in porous media: Experiments and model-based interpretation, J. Contam. Hydrol., 110(3-4), 130142.
  • Rubin, Y. (1990), Stochastic modeling of macrodispersion in heterogeneous porous media, Water Resour. Res., 26(1), 133141.
  • Rubin, Y. (1991), Transport in heterogeneous porous media: Prediction and uncertainty, Water Resour. Res., 27(7), 17231738.
  • Rubin, Y. (2003), Applied Stochastic Hydrogeology, Oxford Univ. Press, Oxford, U. K.
  • Rubin, Y., M. A. Cushey, and A. Bellin (1994), Modeling of transport in groundwater for environmental risk assessment, Stochastic Hydrol. Hydraul., 8(1), 5777.
  • Salandin, P., and V. Fiorotto (1998), Solute transport in highly heterogeneous aquifers, Water Resour. Res., 34(5), 949961.
  • Scheidegger, A. E. (1954), Statistical hydrodynamics in porous media, J. Appl. Phys., 25, 9941001.
  • Scheidegger, A. E. (1961), General theory of dispersion in porous media, J. Geophys. Res., 66, 32733278.
  • Schwede, R. L., O. A. Cirpka, W. Nowak, and I. Neuweiler (2008), Impact of sampling volume on the probability density function of steady state concentration, Water Resour. Res., 44, W12433, doi:10.1029/2007WR006668.
  • Sudicky, E. A. (1986), A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process, Water Resour. Res., 22(13), 20692082.
  • Thierrin, J., and P. K. Kitanidis (1994), Solute dilution at the Borden and Cape Cod groundwater tracer tests, Water Resour. Res., 30(11), 28832890.
  • Tonina, D., and A. Bellin (2008), Effects of pore-scale dispersion, degree of heterogeneity, sampling size, and source volume on the concentration moments of conservative solutes in heterogeneous formations, Adv. Water Resour., 31(2), 339354.
  • Vanderborght, J. (2001), Concentration variance and spatial covariance in second-order stationary heterogeneous conductivity fields, Water Resour. Res., 37(7), 18931912.
  • Werth, C. J., O. A. Cirpka, and P. Grathwohl (2006), Enhanced mixing and reaction through flow focusing in heterogeneous porous media, Water Resour. Res., 42, W12414, doi:10.1029/2005WR004511.
  • Willingham, T. W., C. J. Werth, and A. J. Valocchi (2008), Evaluation of the effects of porous media structure on mixing-controlled reactions using pore-scale modeling and micromodel experiments, Environ. Sci. Technol., 42(9), 31853193.