• pyroconvection;
  • aerosols;
  • biomass burning;
  • UTLS;
  • lower stratosphere

[1] On 7 February 2009, record high temperatures, low rainfall and humidity, and fast blowing winds caused sparks in the bush near the Australian city of Melbourne to ignite much of the southeastern region of the state of Victoria. In just a few days, more than 4500 square kilometers had burned and 173 people had died in what has been called the worst natural disaster in Australian history. The fires released so much smoke that daytime on 7 February was plunged into darkness in Melbourne. Indeed, soot particles and other aerosols are known to scatter and absorb solar radiation. However, airborne particles released by fires are typically thought to remain in the atmosphere close to their sources. In fact, climate models pay little attention to the scattering and absorbing effects of fire-borne aerosols because they are not believed to reach altitudes above 10 kilometers, in the stratosphere, where circulation patterns would distribute a plume of pollution around the globe, possibly leading to global cooling effects. Ash from volcanic plumes has long been considered the sole method by which aerosols and gases could be injected into the stratosphere from the Earth's surface. However, Australia's bushfires of 2009 showed otherwise. (Journal of Geophysical Research-Atmospheres, doi:10.1029/2010JD015162, 2011)