SEARCH

SEARCH BY CITATION

Keywords:

  • surface water-groundwater interaction;
  • nitrification;
  • denitrification;
  • nutrient cycling;
  • nitrogen;
  • stable isotope

[1] Inorganic nitrogen is an important resource for marine and aquatic ecosystems, acting as a fertilizer for phytoplankton and aquatic plants. When nitrogen concentrations soar, algae blooms can occur. Subsequently, when the algae blooms die, their decomposition can consume most of the available dissolved oxygen, negatively affecting the ecosystem as a whole. Creeks and streams act as strong controls, regulating downstream nitrogen concentrations, and researchers have been zooming in on hyporheic zones—zones where water flows through the sediment alongside the surface water—as possible hot spots of activity in the nitrogen cycle. Using a stable isotope tracer, Zarnetske et al. tracked the evolution of a nitrogen addition as it flowed through a heavily instrumented gravel bar in Drift Creek, in Oregon. The researchers found that the gravel bar could act as either a source or a sink of inorganic nitrogen, depending on how long it took for the water to make its way through the bar. When the creek water took longer to pass through the hyporheic zone, nitrogen levels were reduced significantly through denitrification, while any water that traveled quickly could have its inorganic nitrogen concentrations increased by nitrification. The authors note that a context-dependent effect of individual hyporheic zones on inorganic nitrogen concentrations could have important implications for attempts to estimate the effects of a watershed on the nitrogen cycle. (Journal of Geophysical Research-Biogeosciences, doi:10.1029/2010JG001356, 2011)